盒须图
用来描述一组数据离散情况的统计图。
一般作用:
找出数据的异常值;
将多组数据进行对比。
代码
import pandas as pd#引用库
import matplotlib.pyplot as plt
plt.rcParams["font.sans-serif"] = ["FangSong"]#设置中文字体,若数据里面没有中文可以不设置
#plt.rcParams["axes.unicode_minus"] = False#将文件里的负号能正常显示
'''
exle={"湖北": [1032,987 ,863 ,738 ,892 ,782 ,723 ,729 ,902 ,923 ,945,997],
"广东": [1134,1129,1045,1062,989 ,937 ,892 ,942 ,963 ,1039,1073,1107],
"江苏":[1192,1079,1047,947 ,938 ,896 ,894 ,973 ,992 ,1002,1082,1105]
}
hx = pd.DataFrame(exle)#将数据转化为表格型数据结构
plt.boxplot([exle['广东']],notch=True,sym = '-',patch_artist = True,boxprops = {'color':'blue','facecolor':'red'})
#notch:是否是凹口形式的箱型图,sym:异常点的形状,boxprops:color:箱子边框色,facecolor:箱子填充色
#若要显示各种各样的颜色,建议下载seaborn库。
'''
exle = pd.read_excel('演示.xlsx')#打开演示.xlsx文件,这里的文件和python文件放的位置一致,若是放在不同的文件夹下,还需要写上文件路径
labels='湖北','广东','江苏'# x轴对应的标签
plt.boxplot([exle['湖北'],exle['广东'],exle['江苏']],labels=labels,patch_artist = True,boxprops = {'color':'blue','facecolor':'red'})
plt.ylabel('GDP/亿')# y轴标签
plt.xlabel('city')# x轴标签
plt.show()# 将图形显示