盒须图简要制作

盒须图

用来描述一组数据离散情况的统计图。
一般作用:
找出数据的异常值;
将多组数据进行对比。

代码

import pandas as pd#引用库
import matplotlib.pyplot as plt

plt.rcParams["font.sans-serif"] = ["FangSong"]#设置中文字体,若数据里面没有中文可以不设置
#plt.rcParams["axes.unicode_minus"] = False#将文件里的负号能正常显示
'''
exle={"湖北": [1032,987 ,863 ,738 ,892 ,782 ,723 ,729 ,902 ,923 ,945,997],
        "广东":	[1134,1129,1045,1062,989 ,937 ,892 ,942 ,963 ,1039,1073,1107],
        "江苏":[1192,1079,1047,947 ,938 ,896 ,894 ,973 ,992 ,1002,1082,1105]
    }
hx = pd.DataFrame(exle)#将数据转化为表格型数据结构
plt.boxplot([exle['广东']],notch=True,sym = '-',patch_artist = True,boxprops = {'color':'blue','facecolor':'red'})
#notch:是否是凹口形式的箱型图,sym:异常点的形状,boxprops:color:箱子边框色,facecolor:箱子填充色
#若要显示各种各样的颜色,建议下载seaborn库。
'''
exle = pd.read_excel('演示.xlsx')#打开演示.xlsx文件,这里的文件和python文件放的位置一致,若是放在不同的文件夹下,还需要写上文件路径
labels='湖北','广东','江苏'# x轴对应的标签
plt.boxplot([exle['湖北'],exle['广东'],exle['江苏']],labels=labels,patch_artist = True,boxprops = {'color':'blue','facecolor':'red'})

plt.ylabel('GDP/亿')# y轴标签
plt.xlabel('city')# x轴标签
plt.show()# 将图形显示
结果

在这里插入图片描述

欲知参数详情,请转
链接
数据文件下载,请转
百度网盘 提取码:ve1d

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值