安装
按住键盘上的Start+R 键,然后输入cmd
进入命令符,输入pip install squarify
作用
一种坐标系,包括原点(x和y)和宽度/高度(dx和dy)的值。
从最大值到最小值排序并规范化为总面积(即dx*dy)的正值列表。
将数据生成基于matplotlib的树状图可视化
详情
函数返回一个dict列表(即JSON对象),每个dict都是一个矩形,其坐标与给定坐标系相对应,面积与相应值成比例。
import squarify
import matplotlib.pyplot as plt
x = 0.
y = 0.
width = 700.
height = 433.
values = [500, 433, 78, 25, 25, 7]
values.sort(reverse=True)
values = squarify.normalize_sizes(values, width, height)
rects = squarify.squarify(values, x, y, width, height)
print(rects)
还有一个称为padded_squarify的squarify版本,它返回的矩形在布局时有一点填充以显示其边界。
import squarify
import matplotlib.pyplot as plt
x = 0
y = 0
width = 700
height = 433
values = [500, 433, 78, 25, 25, 7]
obviously)
values.sort(reverse=True)
values = squarify.normalize_sizes(values, width, height)
padded_rects = squarify.padded_squarify(values, x, y, width, height)
print(padded_rects)
辅助函数normalize_size将计算规范化值
辅助函数plot将生成基于Matplotlib的数据树映射可视化,这个比较重点,也是比较常用的。
import pandas as pd
import matplotlib.pyplot as plt
import squarify
df_raw = pd.read_csv("实例.csv")
df = df_raw.groupby('class').size().reset_index(name='counts')#按照class的值分组,size统计数据,reset_index建立一个新的索引
labels = df.apply(lambda x: str(x[0]) + "\n (" + str(x[1]) + ")", axis=1)#lambda一种函数,冒号前是参数,可以有多个,冒号后为表达式;axis=0:将一列数据作为lamda的数据
colors = [plt.cm.Spectral(i/float(len(labels))) for i in range(len(labels))]
squarify.plot(sizes=(14,8,15,5,8),label=labels, color=colors, alpha=.8)#sizes的个数说明了分支数的个数,有几就是几,label显示标签,colors颜色,不同的取值有不同的颜色,alpha表示颜色的淡化程度
plt.title('Treemap of Vechile Class')
plt.axis('off')#不显示坐标轴
plt.show()
sizes里有五个数值,所以图片上有五个方块
将代码更改成squarify.plot(sizes=(14,8,15),label=labels, color=colors, alpha=.2)
其中方块变成了三个,alpha=0.2,所以颜色也变得更浅了
将代码更改成squarify.plot(sizes=(14,8,15), color=colors, alpha=1)
,颜色加深,同时标签也没有了,因为我去掉了labels;注意alpha的取值范围是(0~1)
代码中的文件地址百度网盘
提取码:k8kd