本篇主要内容
- 齐次与非齐次线性方程组的定义
- 一般线性方程组与齐次线性方程组解之间的关系
- 齐次线性方程组基础解系的求法
- 非齐次线性方程组解的判定
- 非齐次线性方程组的求解
前言:初学者可先看例题后看推导过程......
定义
对于线性方程组:
可记作
其中
增广阵为
当
时 ,
为导出组
有
Hence W is a subspace of
是
的解
由
则
是
的解
是
的一个解,
是
的任意的解,
则
一定为
的解
下证
是
的通解
此示
是
的解
是
的任意的解,则
欲求通解,只须求(1)的一个特解和(2)的一个基便可
齐次线性方程组基础解系的求法
![]()
P 的后n-r 行(即
)就是解空间的一个基
例题:
故
是该齐次线性方程组的基
非齐次线性方程组解的判定
定理:考虑
则P的后n-r(A)行必为解空间W的一个基
从而
有解
令
有唯一解
特解
时有解且U 为一个解;N的各行一定为解空间的一个基
通解为
,其中
例题:
![]()
是导出组的解空间的一个基
是一个解
所求通解为
,其中
为
的任意数