线性代数核心思想及应用——线性方程组篇(知识点总结及例题详解)

本篇主要内容

  1. 齐次与非齐次线性方程组的定义
  2. 一般线性方程组与齐次线性方程组解之间的关系
  3. 齐次线性方程组基础解系的求法
  4. 非齐次线性方程组解的判定
  5. 非齐次线性方程组的求解

前言:初学者可先看例题后看推导过程......


定义

对于线性方程组:

\begin{Bmatrix} a_{11}x_{1}+ a_{12}x_{2}+... + a_{1n}x_{n} = b_{1}\\ a_{21}x_{1}+ a_{22}x_{2}+... + a_{2n}x_{n} = b_{2}\\ \; \; \; \; ...\\ a_{n1}x_{1}+ a_{n2}x_{2}+... + a_{nn}x_{n} = b_{n} \end{Bmatrix}

可记作 x_{1\times n}A_{n\times m}= b_{1\times m}\left ( 1 \right )

其中 x= \left ( x_{1},...,x_{n} \right )

A= \begin{pmatrix} a_{11} & a_{21} & ... &a_{m1} \\ ... & ... & ... & ...\\ a_{1n}& a_{2n} & ... & a_{mn} \end{pmatrix}

b= \left ( b_{1},...,b_{m} \right )

增广阵为 \binom{A}{b}

b = 0 时 , xA= 0\left ( 2 \right ) 为导出组


\forall\alpha ,\beta \in W,k\alpha +b\in W 有 \left ( k\alpha +\beta \right )A= k\alpha A+\beta A= 0

\alpha,\beta \in W=\left\{ x\in F^{1\times n}\mid xA= 0\right\}

Hence W is a subspace of F^{1\times n}

\forall \alpha ,\beta\left ( 1 \right ) 的解  

\left ( \alpha -\beta \right )A= \alpha A-\beta A= 0

\left ( \alpha -\beta \right )\left ( 2 \right ) 的解


x_{0}\left ( 1\right ) 的一个解,\alpha\left(2 \right ) 的任意的解,

x_{0}+\alpha 一定为 \left ( 1\right ) 的解

下证 x= x_{0}+\alpha \left(3 \right )\left(1 \right ) 的通解

\left ( x_{0}+\alpha \right )A= x_{0}A+\alpha A=b  此示 \left(3 \right )\left(1 \right )的解  

\beta\left(1 \right ) 的任意的解,则 \beta-x_{0}\in W

\beta=x_{0}+l_{1}\alpha_{1}+...+l_{s}\alpha_{s}

欲求通解,只须求(1)的一个特解和(2)的一个基便可


齐次线性方程组基础解系的求法

A\in F^{n\times m}

PA= \begin{pmatrix} I_{r} & 0 \\ 0 & 0 \\ \end{pmatrix}\begin{pmatrix} D_{r} \\Q_{2} \end{pmatrix}= \binom{D_{r}}{0}       P= \binom{P_{1}}{P_{2}}

P\left ( A,I_{n} \right )= \begin{pmatrix} D_{r} & P_{1} \\ 0 & P_{2} \\ \end{pmatrix}


x_{0}A=0\left ( \forall x_{0}\in F^{1\times n},x_{0}\in W \right )\Leftrightarrow x_{0}P^{-1}PAQ=0

\left ( y_{1},y_{2} \right )\begin{pmatrix} I_{r} & 0 \\ 0 & 0 \\ \end{pmatrix}= \left ( y_{1},0 \right )= 0

y_{1}=0 \;\;x_{0}P^{-1}=\left(0,y_{2} \right )

x_{0}=\left(0,y_{2} \right )P=y_{2}(0,I_{n-r})P

(A,I_{n})\rightarrow \begin{pmatrix} D_{r} & P_{1} \\ 0 & P_{2} \\ \end{pmatrix}    P 的后n-r 行(即 P_{2} )就是解空间的一个基


 例题:

\begin{Bmatrix} x_{1}+x_{2}+2x_{3}=0 \\ 2x_{1}+2x_{2}+3x_{3}=0 \\ x_{1}+x_{2}+x_{3}=0 \end{Bmatrix}

\begin{pmatrix} 1 & 2 & 1 & 1 & 0 & 0 \\ 1 & 2 & 1 & 0 & 1 & 0 \\ 2 & 3 & 1 & 0 & 0 & 1 \\ \end{pmatrix}\rightarrow \begin{pmatrix} 1 & 2 & 1 & 1 & 0 & 0 \\ 0 & 0 & 0 & -1 & 1 & 0 \\ 0 & -1 & -1 & -2 & 0 & 1 \\ \end{pmatrix}

\rightarrow\begin{pmatrix} 1 & 2 & 1 & 1 & 0 & 0 \\ 0 & 1 & 1 & 2 & 0 & -1 \\ 0 & 0 & 0 & -1 & 1 & 0 \\ \end{pmatrix}

\left(-1,1,0 \right ) 是该齐次线性方程组的基


 非齐次线性方程组解的判定

定理:考虑 x_{1\times n}A_{n\times m}=0

 C= \left ( A,I_{n} \right )\xrightarrow[]{row}\begin{pmatrix} D_{r} & P_{1} \\ 0 & P_{2} \\ \end{pmatrix}

则P的后n-r(A)行必为解空间W的一个基

从而  dim\left(W \right )=n-r\left(A \right )

 x_{1\times n}A_{n\times m}=b_{1\times m} 有解

令     A=\begin{pmatrix} \alpha _{1} \\ ...\\\alpha _{n} \end{pmatrix} x=\left ( x_{1},...,x_{n} \right )

\Leftrightarrow x_{1}\alpha _{1} +...+x_{n}\alpha _{n} =b\Leftrightarrow r\binom{A}{b}= r\left ( A \right )

 x_{1\times n}A_{n\times m}=b_{1\times m} 有唯一解

\Leftrightarrow r\binom{A}{b} = r\left ( A \right )= n

 UA-b=0  特解

C=\begin{pmatrix} A_{n\times m} &I_{n} \\ -b&0 \\ \end{pmatrix} \xrightarrow[]{row}\begin{pmatrix} D_{r} & M \\ 0 & N \\ E_{1\times m} & U \\ \end{pmatrix}

E_{1\times m}=0 时有解且U 为一个解;N的各行一定为解空间的一个基

通解为 x=U+HN,其中H\in F^{1\times \left(n-r \right )}


例题:

\begin{Bmatrix} x_{1}+2x_{2}+4x_{3}-3x_{4}=0 \\3x_{1}+5x_{2}+6x_{3}-4x_{4}=1 \\4x_{1}+5x_{2}-2x_{3}+3x_{4}=3 \end{Bmatrix}

\begin{pmatrix} 1 & 3 & 4 & 1 & 0 & 0 & 0 \\ 2 & 5 & 5 & 0 & 1 & 0 & 0 \\ 4 & 6 & -2 & 0 & 0 & 1 & 0 \\ -3 & -4 & 3 & 0 & 0 & 0 & 1 \\ 0 & 1 & 3 & 0 & 0 & 0 & 0 \\ \end{pmatrix}   \rightarrow \begin{pmatrix} 1 & 3 & 4 & 1 & 0 & 0 & 0\\ 0 & -1 & -3 & -2 & 1 & 0 & 0 \\ 0 & 0 & 0 & 8 & -6 & 1 & 0 \\ 0 & 0 & 0 & -7 & 5& 0 & 1 \\ 0& 0 & 0 & 2 & -1 & 0 & 0 \\ \end{pmatrix}

\alpha_{1}=\left(8,-6,1,0 \right ),\alpha_{2}=\left(-7,5,0,1 \right ) 是导出组的解空间的一个基

\alpha=\left(2,-1,0,0 \right )是一个解

所求通解为 x_{1}=k_{1}\alpha_{1}+k_{2}\alpha_{2}+\alpha ,其中 k_{1},k_{2}F 的任意数

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

zedkyx

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值