线性空间
本篇主要内容:
1.线性空间及子空间
2.向量的线性关系
3.基、维数、坐标
4.子空间的交与和
5.子空间的直和
6.线性空间的同构
线性空间的定义与性质
1.线性空间的定义
设V是一个非空集合,F是一个数域,称V为F上的一个线性空间,如果满足以下运算规则:
加法 :
数乘 :
其中 为V的任意元素,k , l为F中的任意数。
举例几个常见的线性空间:
: 数域F上的全体m✖️n矩阵关于矩阵的加法与数乘运算构成F上的线性空间。特别地,
表示F上的m维列空间或行空间
: 数域F上的一元多项式环
关于多项式的加法及数与多项式的乘法作成的线性空间
: 数域F上的一切次数
n 的多项式加上零多项式组成的线性空间
2.线性空间的简单性质
- 零元,负元唯一
向量的线性关系
——F上的线性空间,F为基域
线性组合与线性表示
称
为
的一个线性组合
称
可由
线性表示,如果
- 如果向量
可由
线性表示,而每个
又可由
线性表示,则
可由
线性表示
线性相关与线性无关
若向量方程
只有零解,则称向量组
是线性无关的,否则则称
是线性相关的
的m个向量
线性相关的充要条件是齐次线性方程组
有非零解,其中
,即
.特别地,当
时,
线性相关当且仅当
- 将一个线性相关(无关)当向量组任意添加(减少)若干个非零向量所得的新向量组任线性相关(无关)
线性无关,则
不能由
线性表示的充要条件是
线性无关
可由
线性表示,则表示法唯一的充要条件是
线性无关
- 设
,则对
施行初等行变换不改变
的列向量的线性关系(求极大线性无关组)
向量组的等价
- 称
与
等价,若
与
相互线性表示
- 等价具有对称、传递、反身性
- 替换定理:设向量组
线性无关,并且可由向量组
线性表示,则
![]()
用
去替换
中的r个向量,必要时重新排序得
与
等价
- 逆否命题:设
可由向量组
线性表示且
,则
线性相关
替换定理证明:
当 r = 1 时,
不妨设
,
令 r-1 时定理得证
即有
可由
线性表示得
故
不妨设
,
可由
线性表示
故
推论 1 : 向量个数多的向量组可由向量个数少的向量组线性表示,则前者必线性相关
2 : n+1个n元向量组必线性相关
极大线性无关组
- 向量组
中的部分向量组
称为一个极大线性无关组,如果
线性无关
中的任一向量都可由
线性表示
- 一个向量组的极大线性无关组所含向量的个数称为该向量组的秩
- 等价的向量组必等秩;反之不真
- 设两个向量组
和
的秩都为r,并且
可由
线性表示,则这两个向量组等价
如何求极大线性无关组
例:在
中,求向量组
的一个极大线性无关组,并用之表示其余向量
解:以
为列作矩阵
对A施行初等行变换
于是
就是所求的一个极大线性无关组,并且
基、维数与坐标
数域
上的线性空间
中向量组
称为
的一个基,如果
线性无关
可由
线性表示
注:线性空间
的一个基实际上就是
中全体向量的一个极大线性无关组
基向量是有序的
基不唯一,基所含向量个数唯一
扩充基定理:
是
的一组线性无关的向量,
是
的一个基,
则
可扩充为
的一个基
设
是数域
上的n维线性空间,
为
的一个基,对
有
,称
为
在
下的坐标,其中
求向量关于基的坐标:设
是
的一个基,
,
,则
是
关于
的坐标
基变换与坐标变换
设
与
是n维线性空间
的两个基,并且有
形式上记为
则称
为由
到基
的过渡矩阵
基到基的过渡矩阵可逆
过渡矩阵求法
,
即为所求
子空间及其交与和
子空间
设
是数域
上线性空间
的一个非空子集,如果
对于
的加法与数乘也构成
上的线性空间,则称
为
的一个子空间
称为
的平凡子空间,其余子空间称为真子空间
是
上的一个线性空间,
,
是
的子空间
定理
生成子空间
每个
称为生成元
是
中包含
的最小的子空间(线性包)
为
的秩
的一个极大线性无关组是
的一个基
与
等价
子空间的交与和
子空间的交:设
是
的子空间
是
的子空间
![]()
的子空间
证明:
若
是
的子空间,对
,有
,
则
则
若
,对
所以
是
的子空间
子空间的和:
是
的子空间
证明:
性质1:
则
性质2:
中包含
与
的最小子空间是
子空间的和是子空间,但子空间的并未必是子空间。
XOY平面——二维线性空间,
是x轴,
是y轴
子空间的和——XOY平面 子空间的并——x轴与y轴两条直线
子空间的维数公式:
证明:
令
记
为
![]()
![]()
得
全为0,代入
全为0
子空间的直和:
是
的和,若
的每一个向量的表示唯一,则称
为
和
的直和,记为
定理:(如下图)
是
的子空间,则以下几条等价
是
的子空间
,则以下几条等价
零向量表示唯一 零向量表示唯一 是直和
是直和
余子空间:
称
为
的余子空间
余子空间存在但不唯一
线性空间的同构
是
的双射
性质:
是
的一个基
是
的一个基
是
的子空间
![]()
上任意两个n维线性空间都同构 进一步:两个有限维线性空间同构
维数相等