高等代数习题——线性空间(补)

本文详细探讨了线性代数中的关键概念,包括向量的线性无关性、矩阵的等价及基的转换。通过具体的例题解析,证明了在特定条件下非零列向量的存在性和线性无关性,并展示了如何找到从一组向量到另一组向量的过渡矩阵。此外,还涉及了矩阵运算和向量组等价性的判断方法。
摘要由CSDN通过智能技术生成

例题:设A\in F^{n\times n} 并且 A^{s-1}\neq 0,1\leq s\leq nA^{s}= 0

求证:在F^{n} 中存在非零列向量使得\alpha ,A\alpha ,...,A^{s-1}\alpha 线性无关

 证明:因为A^{s-1}\neq 0    

            A^{s-1}e_{i}\neq 0\left ( 1\leq i\leq n \right )

            取 \alpha = e_{i}\left ( 1\leq i\leq n \right )

            \exists k_{1},...,k_{s}\; \; s.t. k_{1}\alpha +k_{2}A\alpha +...+k_{s}A^{s-1}\alpha =0\left ( \ast \right )

            将 \left ( \ast \right ) 左右两边都乘上A^{s-1}

             k_{1}A^{s-1}\alpha = 0\Rightarrow k_{1}=0

            同理 k_{2},...,k_{n}= 0

            故线性无关


例题:判断 F^{4} 中的以下向量组是否等价

\alpha _{1}= \left ( 1,2,3 \right ),\alpha _{2}= \left ( 1,0,2 \right )

\beta _{1}= \left ( 3,4,8 \right ),\beta _{2}= \left ( 2,2,5 \right ),\beta _{3}= \left ( 0,2,1 \right )

解:\left ( \alpha _{1},\alpha _{2} ,\beta _{1},\beta _{2},\beta _{3}\right )= \begin{pmatrix} 1 & 1&3 &2 &0 \\ 2 & 0&4 &2 &2 \\ 3 & 2&8 &5 &1 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 1 & 3 & 2 & 0\\ 0 & -2 & -2 & -2 & 2\\ 0 & -1 & -1 & -1 & 1 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & 2 & 1 & 1\\ 0 & 1 & 1 & 1 & -1\\ 0 & 0 & 0 & 0 & 0 \end{pmatrix}

\alpha _{1}= \beta _{1}-\beta _{2}\; \; \alpha _{2}=2\beta _{2}-\beta _{1}

\beta _{1}= 2\alpha _{1}+\alpha _{2} \; \; \beta _{2}= \alpha _{1}+\alpha _{2}\; \; \beta _{3}= \alpha _{1}-\alpha _{2}


例题:F^{3} 的两组向量分别为 \alpha _{1}= \left ( 1,0,1 \right )\; \alpha _{2}= \left ( 1,1,0 \right )\; \alpha _{3}= \left ( 0,1,1 \right )

\beta _{1}= \left ( 1,0,3 \right )\; \beta _{2}= \left ( 2,2,2 \right )\; \beta _{3}= \left ( -1,1,4 \right )

\left ( i \right ) 求证:两组向量都是F^{3}的基

\left ( ii \right ) 求 \alpha _{1},\alpha _{2},\alpha _{3}\beta _{1},\beta _{2},\beta _{3}的过渡矩阵

\left ( i \right )\begin{vmatrix} 1 & 1 & 0\\ 0 & 1 & 1\\ 1 & 0& 1 \end{vmatrix}= 2\neq 0 \; \; \begin{vmatrix} 1 & 2 & -1\\ 0 & 2 & 1\\ 3 & 2 & 4 \end{vmatrix}= 18\neq 0

\alpha _{1},\alpha _{2},\alpha _{3}  \beta _{1},\beta _{2},\beta _{3} 线性无关

 \left ( ii \right )\begin{pmatrix} 1 & 1 & 0& 1 & 2 & -1\\ 0& 1 & 1 & 0 & 2 & 1\\ 1 & 0& 1& 3 & 2 & 4 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 1& 0 & 1 & 2 & -1\\ 0 & 1& 1 & 0 & 2 & 1\\ 0 & -1 & 1 & 2 & 0 & 5 \end{pmatrix}

\rightarrow \begin{pmatrix} 1 & 1 & 0 & 1 & 2 & -1\\ 0 & 1 & 1 & 0 & 2 & 1\\ 0 & 0 & 2 & 2 & 2 & 6 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & 0 & 2 & 1 & 1\\ 0 & 1 & 0 & -1& 1 & -2\\ 0 & 0 & 1 & 1 & 1 & 3 \end{pmatrix}

得过渡矩阵 T= \begin{pmatrix} 2 & 1& 1\\ -1 & 1 & -2\\ 1 & 1 & 3 \end{pmatrix}


例题:设A\in F^{n\times n} 且 V_{1}= \left \{ X\mid AX= 0 \right \},V_{2}= \left \{ X\mid \left ( A-I \right )X=0 \right \}

求证:A^{2}=A\Leftrightarrow F_{n}\subseteq V_{1}\oplus V_{2}

 证:\Rightarrow :\forall \alpha \in F^{n},\alpha = -\left ( A\alpha -\alpha \right )+A\alpha

        其中 A\alpha \in V_{2},-\left ( A\alpha -\alpha \right )\in V_{1}

        F^{n}\subseteq V_{1}+V_{2}

        显然 V_{1}+V_{2}\subseteq F^{n}

        故 F^{n}= V_{1}+V_{2}

        下证 V_{1}\cap V_{1}= \left \{ 0 \right \}

        对于 \alpha \in V_{1}  同时 \alpha \in V_{2}\Rightarrow \alpha = 0

        A\alpha = 0\; \; \left ( A-I \right )\alpha = 0\Rightarrow \alpha = 0

        V_{1}\cap V_{2}= \left \{ 0 \right \}

        F^{n}= V_{1}\oplus V_{2}

        \Leftarrow :F^{n}=V_{1}\oplus V_{2}

        dimV_{1}+dimV_{2}= n

        r\left ( A \right )+r\left ( A-I \right )=n

        \begin{pmatrix} A & 0\\ 0& A-I \end{pmatrix}\rightarrow \begin{pmatrix} A & A\\ 0 & I-A \end{pmatrix}\rightarrow \begin{pmatrix} A & A\\ A & I \end{pmatrix}\rightarrow \begin{pmatrix} A-A^{2} & 0\\ 0 & I \end{pmatrix}

        r\left ( A-A^{2} \right )+r\left ( I \right )=n

        r\left ( A-A^{2} \right )= 0

        A^{2}= A

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

zedkyx

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值