迪杰斯特拉算法

Dijkstra(迪杰斯特拉)算法是典型的最短路径路由算法,用于计算一个节点到其他所有节点的最短路径。主要特点是以起始点为中心向外层层扩展,直到扩展到终点为止(BFS、prime算法都有类似思想)。Dijkstra算法能得出最短路径的最优解,但由于它遍历计算的节点很多,所以效率低。

1、算法思想

令G = (V,E)为一个带权有向网,把图中的顶点集合V分成两组:已求出最短路径的顶点集合S(初始时S中只有源节点,以后每求得一条最短路径,就将它对应的顶点加入到集合S中,直到全部顶点都加入到S中);未确定最短路径的顶点集合V-S。在加入过程中,总保持从源节点v到S中各顶点的最短路径长度不大于从源节点v到V-S中任何顶点的最短路径长度。
2、算法描述

(1)S为已经找到的从v出发的最短路径的终点集合,它的初始状态为空集,那么从v出发到图中其余各顶点(终点)vi(vi∈V-S)可能达到的最短路径长度的初值为:

     d[i] = arcs[LocateVex(G, v)][i],vi∈V

(2)选择vj,使得 d[j] = Min{d[i]|vi属于V-S},vj就是当前求得的一条从v出发的最短路径的终点。令S=S∪{j};

(3)修改从v出发到集合V-S上任一顶点vk可达的最短路径长度。如果 d[j] + arcs[j][k] < d[k], 则修改d[k]为:d[k] = d[j] + arcs[j][k];

(4)重复(2),知道所有顶点都包含在S中,此时得到v到图上其余各顶点的最短路径是依路径长度递增的序列。

具体图例与算法执行步骤:(从A开始,到各节点的最短路径)

具体执行步骤如下图所示:

PS:图片右下角是原作者的博客地址。
3、算法具体实现

[cpp] view plain copy
typedef int PathMatrix; //用于存储最短路径序列的顶点下标数组
typedef EdgeType ShortPathTable; //用于存储到各点最短路径的权值和
[cpp] view plain copy
/* Dijkstra算法求有向网g的下标为v0的顶点到其余顶点下标为v的最短路径P[v]及带权长度D[v] */
/* P[v]的值为前驱顶点下标,D[v]表示v0到v的最短路径长度和 */
void ShortestPath_DIJ(Graph *g, int v0, PathMatrix p[], ShortPathTable d[])
{
int i, v, w, k;
EdgeType min;
bool final[MAX_VEX]; /* final[w]=1表示求得顶点V0至Vw的最短路径 */

//初始化数据  
for (v = 0; v < g->vexNum; v++)  
{  
    final[v] = false;      //全部顶点初始化为未知最短路径状态  
    d[v] = g->arc[v0][v];  //将与v0点有连线的顶点加上权值  
    p[v] = v0;             //初始化路径数组P为v0  
}  
d[v0] = 0;                //v0至v0的路径为0  
final[v0] = true;         //v0∈S, v0至v0不需要求路径  

//开始主循环,每次求得v0到某个v顶点的最短路径,并 加入v到集合S  
for (i = 0; i < g->vexNum; i++)  
{  
    if (i == v0) continue;  
    min = INFINITY;  
    for (w = 0; w < g->vexNum; w++)    //寻找V-S中离v0最近的顶点  
    {  
        if (!final[w] && d[w] < min)  
        {  
            min = d[w];    //下标为w的顶点离v0更近  
            v = w;  
        }  
    }  
            //if (v == t) break;    //如果只查找到下标为t的某个顶点  
    final[v] = true;    //下标为k的顶点并入集合S,即将当前找到了最短路径的顶点标记为true  

    //更新当前最短路径及距离  
    for (w = 0; w < g->vexNum; w++)  
    {  
        //如果经过v顶点的路径比现在这条路径的长度短的话  
        if (!final[w] && (min + g->arc[v][w] < d[w]))  
        {  
            //说明找到了更短的路径,修改D[w]和P[w]  
            d[w] = min + g->arc[v][w];  
            p[w] = v;  
        }  
    }  
}  

}
下面是根据路径数组PathMatrix得到具体的路径序列:

[cpp] view plain copy
// 查找从源点v到终点u的路径,并输出
void SearchPath(VertexType vex[], PathMatrix *prev,int v, int u)
{
int que[MAX_VEX];
int tot = 0;
que[tot++] = u; //终点u
int tmp = prev[u]; //到顶点下标u的路径上的上一个顶点下标
while(tmp != v)
{
que[tot++] = tmp;
tmp = prev[tmp]; //到顶点下标tmp的路径上的上一个顶点下标
}
que[tot] = v;
for(int i = tot; i >= 0; –i)
if(i != 0)
printf(“%c -> “, vex[que[i]]);
else
printf(“%c”, vex[que[i]]);
}
以上面的无向网为例,运行结果截图:

dijkstra算法两个应用题:
HDOJ 1874 畅通工程续,现有解法:www.wutianqi.com/?p=1894
HDOJ 2544 最短路,现有解法:www.wutianqi.com/?p=1892

参考:http://hi.baidu.com/zealot886/item/c8a499ee5795bcddeb34c950

       数据结构(C语言版)

      http://www.cnblogs.com/biyeymyhjob/archive/2012/07/31/2615833.html

推荐几篇搜索算法相关的非常好的博文:

一、A*搜索算法

一(续)、A*,Dijkstra,BFS算法性能比较及A*算法的应用

二、Dijkstra 算法初探 (Dijkstra算法系列4篇文章)

二(续)、彻底理解Dijkstra算法

二(再续)、Dijkstra 算法+fibonacci堆的逐步c实现

二(三续)、Dijkstra 算法+Heap堆的完整c实现源码

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值