迪杰斯特拉(Dijkstra)算法求最短路径

1.Dijkstra算法原理

 

\begin{bmatrix} \infty & \infty & 10 & \infty & 30 & 100 \\ \infty & \infty & 5 & \infty & \infty & \infty \\ \infty & \infty & \infty & 50 & \infty & \infty \\ \infty & \infty & \infty & \infty & \infty & 10 \\ \infty & \infty & \infty & 20 & \infty & 60 \\ \infty & \infty & \infty & \infty & \infty & \infty \\ \end{bmatrix}

(1)两个顶点集 S 、T = V - S(V是原图所有顶点集合)

S:存放已找到最短路径的顶点

T:存放未找到最短路径的顶点

(2)实现步骤:

先将开始节点(V0)加入 S,不断从 T 中选取到 V0 有最短路径的顶点 (u),将 u 加入 S;S 中每加入一个顶点都要修改 V0 到 T 中剩余顶点的最短路径长度值。直到 T 中顶点全部加入 S。

终点V0 到各终点的 D 值和最短路径求解过程
i = 1i = 2i = 3i = 4i = 5
V1

D[1] = \infty

p[1] = {0,0,0,0,0,0}

\infty\infty\infty\infty
V2

D[2] = 10

p[2] = {1,0,1,0,0,0}

即<V0,V2>

V3

D[3] = \infty

p[3] = {0,0,0,0,0,0}

D[3] = 60

p[3] = {1,0,1,1,0,0}

即<V0,V2,V3>

D[3] = 50

p[3] = {1,0,0,1,1,0}

即<V0,V4,V3>

V4

D[4] = 30

p[4] = {1,0,0,0,1,0}

即<V0,V4>

D[4] = 30

p[4] = {1,0,0,0,1,0}

即<V0,V4>

V5

D[5] = 100

p[5] = {1,0,0,0,0,1}

即<V0,V5>

D[5] = 100 

p[5] = {1,0,0,0,0,1}

即<V0,V5>

D[5] = 90

p[5] = {1,0,0,0,1,1}

即<V0,V4,V5>

D[5] = 60

p[5] = {1,0,0,1,1,1}

即<V0,V4,V3,V5>

VjV2V4V3V5
S{V0,V2}{V0,V2,V4}{V0,V2,V4,V3}{V0,V2,V4,V3,V5}

2.源代码

2.1 Java实现

package math_problem;

import java.util.Arrays;
import java.util.Scanner;

class Graph {
    static final int MAX_VEX_NUM = 20;     // 最大顶点数
    char[] vertex = new char[MAX_VEX_NUM]; // 顶点数组
    int graphType;                         // 图的类型。1-有向图,0-无向图
    int vexNum;                            // 实际顶点数
    int edgeNum;                           // 实际边数
    int[][] edgeWeight = new int[MAX_VEX_NUM][MAX_VEX_NUM];   // 保存边的权值
}

public class ShortestPathDemo {
    static Scanner input = new Scanner(System.in);
    static final int INFINITY = 65535;      // 边上最大权值

    private static int getIndexOfChar(char[] charArray, char c) {
        for (int i = 0; i < charArray.length; i++) {
            if (c == charArray[i])
                return i;
        }
        return -1;
    }

    private void createGraph(Graph g) {
        int weight;
        char sVex, eVex;// 边的起始、结束顶点

        System.out.print("创建图,请输入图的类型(1:有向图/0:无向图):");
        g.graphType = input.nextInt();

        System.out.println("创建图,请输入各顶点信息...");
        System.out.print("请输入顶点数量:");
        g.vexNum = input.nextInt();
        for (int l = 0; l < g.vexNum; l++) {
            System.out.printf("第 %d 个顶点:", l+1);
            g.vertex[l] = (input.next().toCharArray())[0];
        }

        System.out.println("创建图,请输入各边顶点及权值...");
        System.out.print("请输入边数量:");
        g.edgeNum = input.nextInt();

        // 初始化邻接矩阵
        for (int i = 0; i < g.vexNum; i++) {
            for (int j = 0; j < g.vexNum; j++) {
                g.edgeWeight[i][j] = INFINITY;
            }
        }

        System.out.println("请依次输入每条边的信息(起始顶点,结束顶点,权值):");
        int indexOfsVex, indexOfeVex;
        for (int i = 0; i < g.edgeNum; i++) {
            sVex = input.next().charAt(0);
            eVex = input.next().charAt(0);
            weight = input.nextInt();

            indexOfsVex = getIndexOfChar(g.vertex, sVex);
            indexOfeVex = getIndexOfChar(g.vertex, eVex);
            g.edgeWeight[indexOfsVex][indexOfeVex] = weight;
            // 若是无向图,保存边 E(k,j)的权值
            if (g.graphType == 0) {
                g.edgeWeight[indexOfeVex][indexOfsVex] = weight;
            }
        }
    }

    // 输出邻接矩阵
    private void displayAdjMatrix(Graph g) {
        int i, j;

        // 先输出顶点信息
        for (i = 0; i < g.vexNum; i++) {
            System.out.printf("\t%c", g.vertex[i]);
        }
        System.out.println();

        // 输出邻接矩阵
        for (j = 0; j < g.vexNum; j++) {
            System.out.printf("%c", g.vertex[j]);
            for (i = 0; i < g.vexNum; i++) {
                if (g.edgeWeight[j][i] == INFINITY) {
                    // 权值大于等于最大权值时,输出无穷大的符号
                    System.out.print("\t∞");
                    continue;
                }
                System.out.printf("\t%d", g.edgeWeight[j][i]);
            }
            System.out.println();
        }
    }

    private static void dijkstraShortestPath(Graph g) {
        int minWeight, indexOfsVex, k = 0;
        char startVex;
        int[] d = new int[g.vexNum];
        int[] s = new int[g.vexNum];
        int[][] p = new int[g.vexNum][g.vexNum];

        System.out.print("请输入开始节点:");
        startVex = input.next().charAt(0);
        indexOfsVex = getIndexOfChar(g.vertex, startVex);

        for (int i = 0; i < g.vexNum; i++) {
            d[i] = g.edgeWeight[indexOfsVex][i];
            if (d[i] < INFINITY) {
                p[i][indexOfsVex] = 1;
                p[i][i] = 1;
            }
        }
        // 将起始节点加入集合 S
        s[indexOfsVex] = 1;

        for (int i = 1; i < g.vexNum; i++) {
            minWeight = INFINITY;
            for (int j = 0; j < g.vexNum; j++) {
                if (s[j] != 1 && d[j] < minWeight) {
                    minWeight = d[j];
                    k = j;
                }
            }
            // 将新的节点加入集合 S
            s[k] = 1;

            for (int j = 0; j < g.vexNum; j++) {
                if (s[j] != 1 && (minWeight + g.edgeWeight[k][j] < d[j])) {
                    d[j] = minWeight + g.edgeWeight[k][j];
                    for (int l = 0; l < g.vexNum; l++) {
                        p[j][l] = p[k][l];
                    }
                    p[j][j] = 1;
                }
            }
        }

        for (int i = 0; i < g.vexNum; i++) {
            for (int j = 0; j < g.vexNum; j++) {
                System.out.print(p[i][j] + " ");
            }
            System.out.println();
        }

        System.out.println(Arrays.toString(d));
    }

    public static void main(String[] args) {
        Graph graph = new Graph();
        ShortestPathDemo demo = new ShortestPathDemo();
        demo.createGraph(graph);
        demo.displayAdjMatrix(graph);
        demo.dijkstraShortestPath(graph);
    }
}
创建图,请输入图的类型(1:有向图/0:无向图):1
创建图,请输入各顶点信息...
请输入顶点数量:6
第 1 个顶点:0
第 2 个顶点:1
第 3 个顶点:2
第 4 个顶点:3
第 5 个顶点:4
第 6 个顶点:5
创建图,请输入各边顶点及权值...
请输入边数量:8
请依次输入每条边的信息(起始顶点,结束顶点,权值):
0 2 10
0 4 30
0 5 100
4 5 60
4 3 20
3 5 10
2 3 50
1 2 5
	0	1	2	3	4	5
0	∞	∞	10	∞	30	100
1	∞	∞	5	∞	∞	∞
2	∞	∞	∞	50	∞	∞
3	∞	∞	∞	∞	∞	10
4	∞	∞	∞	20	∞	60
5	∞	∞	∞	∞	∞	∞
请输入开始节点:0
0 0 0 0 0 0 
0 0 0 0 0 0 
1 0 1 0 0 0 
1 0 0 1 1 0 
1 0 0 0 1 0 
1 0 0 1 1 1 
[65535, 65535, 10, 50, 30, 60]

Process finished with exit code 0

2.2 C语言实现 

​
#include <stdio.h>
#include <stdlib.h>

#define INFINITY 10000      /* 假定弧上权值无穷大时为10000 */
#define MAX_VERTEX_NUM 100  /* 图中最大节点数 */
typedef char VexType;       /* 顶点类型设置为字符型 */
typedef int weight;         /* 弧上权值类型设置为整型 */
typedef struct              /* 弧表节点 */
{
    VexType vex[MAX_VERTEX_NUM];                 /* 图中节点 */
    weight edges[MAX_VERTEX_NUM][MAX_VERTEX_NUM];/* 邻接矩阵 */
    int vexnum;                                  /* 节点的数目 */
    int edgenum;                                 /* 弧的数目 */
}MGraph;
 
void CreateDG(MGraph * DG);          /* 邻接矩阵法创建有向图(directed graph) */
void PrintDG(MGraph DG);             /* 邻接矩阵形式输出图DG */
void ShortestPath_Dijkstra(MGraph DG, VexType StartVex);
                                     /* 从节点StartVex开始求最短路径 */
void locateVex(MGraph DG, VexType vex, int * index);
                                     /* 定位节点vex的下标并赋给index */                                     
                             
int main(void)
{
    MGraph g;
 
    CreateDG(&g);
    printf("------------------------------\n");
    printf("vexnum = %d ; edgenum = %d\n", g.vexnum, g.edgenum);
    printf("------------------------------\n");
    PrintDG(g);
    printf("------------------------------\n");
    ShortestPath_Dijkstra(g, '0');

    return 0;
}
void CreateDG(MGraph * DG)
{
    int i = 0, j, k, w;                 /* w:权值 */
    char ch;
 
    printf("请依次输入顶点数、弧数:");
    scanf("%d %d", &(DG->vexnum), &(DG->edgenum));
 
    printf("请依次输入顶点(以回车结束输入):");
    getchar();
    while ((ch = getchar()) != '\n')    /* 输入顶点信息 */
        DG->vex[i++] = ch;
 
    for (i = 0; i < DG->vexnum; i++)    /* 初始化邻接矩阵 */
        for (j = 0; j < DG->vexnum; j++)
            DG->edges[i][j] = INFINITY;
 
    printf("顶点 | 下标\n");
    for (i = 0; i < DG->vexnum; i++)    /* 显示图中顶点及其对应下标 */
    {
        printf("%3c%6d\n", DG->vex[i], i);
    }
 
    printf("请输入依次每条弧的弧尾下标(不带箭头)、弧头下标(带箭头)、权值(格式:i j w):\n");
    for (k = 0; k < DG->edgenum; k++)   /* 建立邻接矩阵 */
    {
        scanf("\n%d%d%d", &i, &j, &w);  /* 输入弧的两个节点及权值 */
        DG->edges[i][j] = w;            /* 将矩阵对应位置元素置为权值 */
    }
}
void PrintDG(MGraph DG)
{
    int i, j;
 
    for (i = 0; i < DG.vexnum; i++)         /* 输出邻接矩阵 */
    {
        for (j = 0; j < DG.vexnum; j++)
        {
            if (DG.edges[i][j] == INFINITY) /* 节点不连通时,输出无穷大 */
                printf("    ∞");
            else                            /* 节点连通时,输出弧上权值 */
                printf("%5d", DG.edges[i][j]);
        }
        printf("\n");
    }
}
void ShortestPath_Dijkstra(MGraph DG, VexType StartVex)
{
    int i, j, v, index;         /* index:开始节点下标 */
    int min;                    /* 开始节点到指定节点的最短路径权值和 */
    int final[DG.vexnum];       /* 集合S,元素值为1:下标为i的节点以加入集合S;为0:未加入 */
    int P[DG.vexnum][DG.vexnum];/* 开始节点到各节点的最短路径 */
    int D[DG.vexnum];           /* 开始节点到下标为i的节点的最短路径权值之和 */
   
    locateVex(DG, StartVex, &index);
    for (i = 0; i < DG.vexnum; i++)
    {
        final[i] = 0;                   /* 初始化,刚开始集合S为空 */
        D[i] = DG.edges[index][i];

        for (j = 0; j < DG.vexnum; j++) /* 初始化路径,假设所有节点都不连通 */
            P[i][j] = 0;
        if (D[i] < INFINITY)            /* 若节点连通,则在数组P[i]中标明路径 */
        {
            P[i][index] = 1;
            P[i][i] = 1;
        }
    }
    D[index] = 0; final[index] = 1;     /* 开始节点加入S集 */

    for (i = 1; i < DG.vexnum; i++)
    {
        min = INFINITY;
        for (j = 0; j < DG.vexnum; j++)
            if (!final[j])
                if (D[j] < min) { v = j; min = D[j]; }
        final[v] = 1;                   /* 把离StartVex最近的下标为v的节点加入S */ 
        
        for (j = 0; j < DG.vexnum; j++)
            if (!final[j] && (min + DG.edges[v][j] < D[j]))
            {/* 若下标为j的节点为加入S且有更短路径,则更新D[j]和最短路径 */
                D[j] = min + DG.edges[v][j];
                for (int k = 0; k < DG.vexnum; k++)
                   P[j][k] = P[v][k];
                P[j][j] = 1;
            }
    }

    printf("节点 %c 到各节点的最短路径:\n", StartVex);
    for (i = 0; i < DG.vexnum; i++)        
    {
        for (j = 0; j < DG.vexnum; j++)
            printf("%5d", P[i][j]);
        printf("\n");
    }

    printf("节点 %c 到各节点的最短路径值:", StartVex);
    for (i = 0; i < DG.vexnum; i++)
    {
        if (D[i] == INFINITY)
            printf("∞, ");
        else
            printf("%d, ", D[i]); 
    }
}
void locateVex(MGraph DG, VexType vex, int * index)
{
    int i;
 
    for (i = 0; i < DG.vexnum; i++)
    {
        if (DG.vex[i] == vex)
        {
            *index = i;
            return;
        }
    }
    printf("节点定位失败!\n");
}

​

评论 6
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值