1.Dijkstra算法原理
(1)两个顶点集 S 、T = V - S(V是原图所有顶点集合)
S:存放已找到最短路径的顶点
T:存放未找到最短路径的顶点
(2)实现步骤:
先将开始节点(V0)加入 S,不断从 T 中选取到 V0 有最短路径的顶点 (u),将 u 加入 S;S 中每加入一个顶点都要修改 V0 到 T 中剩余顶点的最短路径长度值。直到 T 中顶点全部加入 S。
终点 | V0 到各终点的 D 值和最短路径求解过程 | ||||
i = 1 | i = 2 | i = 3 | i = 4 | i = 5 | |
V1 | D[1] = p[1] = {0,0,0,0,0,0} | ||||
V2 | D[2] = 10 p[2] = {1,0,1,0,0,0} 即<V0,V2> | ||||
V3 | D[3] = p[3] = {0,0,0,0,0,0} | D[3] = 60 p[3] = {1,0,1,1,0,0} 即<V0,V2,V3> | D[3] = 50 p[3] = {1,0,0,1,1,0} 即<V0,V4,V3> | ||
V4 | D[4] = 30 p[4] = {1,0,0,0,1,0} 即<V0,V4> | D[4] = 30 p[4] = {1,0,0,0,1,0} 即<V0,V4> | |||
V5 | D[5] = 100 p[5] = {1,0,0,0,0,1} 即<V0,V5> | D[5] = 100 p[5] = {1,0,0,0,0,1} 即<V0,V5> | D[5] = 90 p[5] = {1,0,0,0,1,1} 即<V0,V4,V5> | D[5] = 60 p[5] = {1,0,0,1,1,1} 即<V0,V4,V3,V5> | |
Vj | V2 | V4 | V3 | V5 | |
S | {V0,V2} | {V0,V2,V4} | {V0,V2,V4,V3} | {V0,V2,V4,V3,V5} |
2.源代码
2.1 Java实现
package math_problem;
import java.util.Arrays;
import java.util.Scanner;
class Graph {
static final int MAX_VEX_NUM = 20; // 最大顶点数
char[] vertex = new char[MAX_VEX_NUM]; // 顶点数组
int graphType; // 图的类型。1-有向图,0-无向图
int vexNum; // 实际顶点数
int edgeNum; // 实际边数
int[][] edgeWeight = new int[MAX_VEX_NUM][MAX_VEX_NUM]; // 保存边的权值
}
public class ShortestPathDemo {
static Scanner input = new Scanner(System.in);
static final int INFINITY = 65535; // 边上最大权值
private static int getIndexOfChar(char[] charArray, char c) {
for (int i = 0; i < charArray.length; i++) {
if (c == charArray[i])
return i;
}
return -1;
}
private void createGraph(Graph g) {
int weight;
char sVex, eVex;// 边的起始、结束顶点
System.out.print("创建图,请输入图的类型(1:有向图/0:无向图):");
g.graphType = input.nextInt();
System.out.println("创建图,请输入各顶点信息...");
System.out.print("请输入顶点数量:");
g.vexNum = input.nextInt();
for (int l = 0; l < g.vexNum; l++) {
System.out.printf("第 %d 个顶点:", l+1);
g.vertex[l] = (input.next().toCharArray())[0];
}
System.out.println("创建图,请输入各边顶点及权值...");
System.out.print("请输入边数量:");
g.edgeNum = input.nextInt();
// 初始化邻接矩阵
for (int i = 0; i < g.vexNum; i++) {
for (int j = 0; j < g.vexNum; j++) {
g.edgeWeight[i][j] = INFINITY;
}
}
System.out.println("请依次输入每条边的信息(起始顶点,结束顶点,权值):");
int indexOfsVex, indexOfeVex;
for (int i = 0; i < g.edgeNum; i++) {
sVex = input.next().charAt(0);
eVex = input.next().charAt(0);
weight = input.nextInt();
indexOfsVex = getIndexOfChar(g.vertex, sVex);
indexOfeVex = getIndexOfChar(g.vertex, eVex);
g.edgeWeight[indexOfsVex][indexOfeVex] = weight;
// 若是无向图,保存边 E(k,j)的权值
if (g.graphType == 0) {
g.edgeWeight[indexOfeVex][indexOfsVex] = weight;
}
}
}
// 输出邻接矩阵
private void displayAdjMatrix(Graph g) {
int i, j;
// 先输出顶点信息
for (i = 0; i < g.vexNum; i++) {
System.out.printf("\t%c", g.vertex[i]);
}
System.out.println();
// 输出邻接矩阵
for (j = 0; j < g.vexNum; j++) {
System.out.printf("%c", g.vertex[j]);
for (i = 0; i < g.vexNum; i++) {
if (g.edgeWeight[j][i] == INFINITY) {
// 权值大于等于最大权值时,输出无穷大的符号
System.out.print("\t∞");
continue;
}
System.out.printf("\t%d", g.edgeWeight[j][i]);
}
System.out.println();
}
}
private static void dijkstraShortestPath(Graph g) {
int minWeight, indexOfsVex, k = 0;
char startVex;
int[] d = new int[g.vexNum];
int[] s = new int[g.vexNum];
int[][] p = new int[g.vexNum][g.vexNum];
System.out.print("请输入开始节点:");
startVex = input.next().charAt(0);
indexOfsVex = getIndexOfChar(g.vertex, startVex);
for (int i = 0; i < g.vexNum; i++) {
d[i] = g.edgeWeight[indexOfsVex][i];
if (d[i] < INFINITY) {
p[i][indexOfsVex] = 1;
p[i][i] = 1;
}
}
// 将起始节点加入集合 S
s[indexOfsVex] = 1;
for (int i = 1; i < g.vexNum; i++) {
minWeight = INFINITY;
for (int j = 0; j < g.vexNum; j++) {
if (s[j] != 1 && d[j] < minWeight) {
minWeight = d[j];
k = j;
}
}
// 将新的节点加入集合 S
s[k] = 1;
for (int j = 0; j < g.vexNum; j++) {
if (s[j] != 1 && (minWeight + g.edgeWeight[k][j] < d[j])) {
d[j] = minWeight + g.edgeWeight[k][j];
for (int l = 0; l < g.vexNum; l++) {
p[j][l] = p[k][l];
}
p[j][j] = 1;
}
}
}
for (int i = 0; i < g.vexNum; i++) {
for (int j = 0; j < g.vexNum; j++) {
System.out.print(p[i][j] + " ");
}
System.out.println();
}
System.out.println(Arrays.toString(d));
}
public static void main(String[] args) {
Graph graph = new Graph();
ShortestPathDemo demo = new ShortestPathDemo();
demo.createGraph(graph);
demo.displayAdjMatrix(graph);
demo.dijkstraShortestPath(graph);
}
}
创建图,请输入图的类型(1:有向图/0:无向图):1
创建图,请输入各顶点信息...
请输入顶点数量:6
第 1 个顶点:0
第 2 个顶点:1
第 3 个顶点:2
第 4 个顶点:3
第 5 个顶点:4
第 6 个顶点:5
创建图,请输入各边顶点及权值...
请输入边数量:8
请依次输入每条边的信息(起始顶点,结束顶点,权值):
0 2 10
0 4 30
0 5 100
4 5 60
4 3 20
3 5 10
2 3 50
1 2 5
0 1 2 3 4 5
0 ∞ ∞ 10 ∞ 30 100
1 ∞ ∞ 5 ∞ ∞ ∞
2 ∞ ∞ ∞ 50 ∞ ∞
3 ∞ ∞ ∞ ∞ ∞ 10
4 ∞ ∞ ∞ 20 ∞ 60
5 ∞ ∞ ∞ ∞ ∞ ∞
请输入开始节点:0
0 0 0 0 0 0
0 0 0 0 0 0
1 0 1 0 0 0
1 0 0 1 1 0
1 0 0 0 1 0
1 0 0 1 1 1
[65535, 65535, 10, 50, 30, 60]
Process finished with exit code 0
2.2 C语言实现
#include <stdio.h>
#include <stdlib.h>
#define INFINITY 10000 /* 假定弧上权值无穷大时为10000 */
#define MAX_VERTEX_NUM 100 /* 图中最大节点数 */
typedef char VexType; /* 顶点类型设置为字符型 */
typedef int weight; /* 弧上权值类型设置为整型 */
typedef struct /* 弧表节点 */
{
VexType vex[MAX_VERTEX_NUM]; /* 图中节点 */
weight edges[MAX_VERTEX_NUM][MAX_VERTEX_NUM];/* 邻接矩阵 */
int vexnum; /* 节点的数目 */
int edgenum; /* 弧的数目 */
}MGraph;
void CreateDG(MGraph * DG); /* 邻接矩阵法创建有向图(directed graph) */
void PrintDG(MGraph DG); /* 邻接矩阵形式输出图DG */
void ShortestPath_Dijkstra(MGraph DG, VexType StartVex);
/* 从节点StartVex开始求最短路径 */
void locateVex(MGraph DG, VexType vex, int * index);
/* 定位节点vex的下标并赋给index */
int main(void)
{
MGraph g;
CreateDG(&g);
printf("------------------------------\n");
printf("vexnum = %d ; edgenum = %d\n", g.vexnum, g.edgenum);
printf("------------------------------\n");
PrintDG(g);
printf("------------------------------\n");
ShortestPath_Dijkstra(g, '0');
return 0;
}
void CreateDG(MGraph * DG)
{
int i = 0, j, k, w; /* w:权值 */
char ch;
printf("请依次输入顶点数、弧数:");
scanf("%d %d", &(DG->vexnum), &(DG->edgenum));
printf("请依次输入顶点(以回车结束输入):");
getchar();
while ((ch = getchar()) != '\n') /* 输入顶点信息 */
DG->vex[i++] = ch;
for (i = 0; i < DG->vexnum; i++) /* 初始化邻接矩阵 */
for (j = 0; j < DG->vexnum; j++)
DG->edges[i][j] = INFINITY;
printf("顶点 | 下标\n");
for (i = 0; i < DG->vexnum; i++) /* 显示图中顶点及其对应下标 */
{
printf("%3c%6d\n", DG->vex[i], i);
}
printf("请输入依次每条弧的弧尾下标(不带箭头)、弧头下标(带箭头)、权值(格式:i j w):\n");
for (k = 0; k < DG->edgenum; k++) /* 建立邻接矩阵 */
{
scanf("\n%d%d%d", &i, &j, &w); /* 输入弧的两个节点及权值 */
DG->edges[i][j] = w; /* 将矩阵对应位置元素置为权值 */
}
}
void PrintDG(MGraph DG)
{
int i, j;
for (i = 0; i < DG.vexnum; i++) /* 输出邻接矩阵 */
{
for (j = 0; j < DG.vexnum; j++)
{
if (DG.edges[i][j] == INFINITY) /* 节点不连通时,输出无穷大 */
printf(" ∞");
else /* 节点连通时,输出弧上权值 */
printf("%5d", DG.edges[i][j]);
}
printf("\n");
}
}
void ShortestPath_Dijkstra(MGraph DG, VexType StartVex)
{
int i, j, v, index; /* index:开始节点下标 */
int min; /* 开始节点到指定节点的最短路径权值和 */
int final[DG.vexnum]; /* 集合S,元素值为1:下标为i的节点以加入集合S;为0:未加入 */
int P[DG.vexnum][DG.vexnum];/* 开始节点到各节点的最短路径 */
int D[DG.vexnum]; /* 开始节点到下标为i的节点的最短路径权值之和 */
locateVex(DG, StartVex, &index);
for (i = 0; i < DG.vexnum; i++)
{
final[i] = 0; /* 初始化,刚开始集合S为空 */
D[i] = DG.edges[index][i];
for (j = 0; j < DG.vexnum; j++) /* 初始化路径,假设所有节点都不连通 */
P[i][j] = 0;
if (D[i] < INFINITY) /* 若节点连通,则在数组P[i]中标明路径 */
{
P[i][index] = 1;
P[i][i] = 1;
}
}
D[index] = 0; final[index] = 1; /* 开始节点加入S集 */
for (i = 1; i < DG.vexnum; i++)
{
min = INFINITY;
for (j = 0; j < DG.vexnum; j++)
if (!final[j])
if (D[j] < min) { v = j; min = D[j]; }
final[v] = 1; /* 把离StartVex最近的下标为v的节点加入S */
for (j = 0; j < DG.vexnum; j++)
if (!final[j] && (min + DG.edges[v][j] < D[j]))
{/* 若下标为j的节点为加入S且有更短路径,则更新D[j]和最短路径 */
D[j] = min + DG.edges[v][j];
for (int k = 0; k < DG.vexnum; k++)
P[j][k] = P[v][k];
P[j][j] = 1;
}
}
printf("节点 %c 到各节点的最短路径:\n", StartVex);
for (i = 0; i < DG.vexnum; i++)
{
for (j = 0; j < DG.vexnum; j++)
printf("%5d", P[i][j]);
printf("\n");
}
printf("节点 %c 到各节点的最短路径值:", StartVex);
for (i = 0; i < DG.vexnum; i++)
{
if (D[i] == INFINITY)
printf("∞, ");
else
printf("%d, ", D[i]);
}
}
void locateVex(MGraph DG, VexType vex, int * index)
{
int i;
for (i = 0; i < DG.vexnum; i++)
{
if (DG.vex[i] == vex)
{
*index = i;
return;
}
}
printf("节点定位失败!\n");
}