行人重识别图片相似度比较:马氏距离

马氏距离

2020年9月4日 周五 晴 苏州工业园区

马氏距离(Mahalanobis distance)是度量学习中一种常用的距离指标,同欧氏距离、曼哈顿距离、汉明距离等一样被用作评定数据之间的相似度指标。但却可以应对高维线性分布的数据中各维度间非独立同分布的问题。

定义

数据点 x ∈ R m , y ∈ R m x\in R^m, y\in R^m xRm,yRm之间的马氏距离为:
d M = ( x − y ) T Σ − 1 ( x − y ) d_{M} = \sqrt{(x-y)^T\Sigma^{-1}(x-y)} dM=(xy)TΣ1(xy) 其中 Σ ∈ R m × m Σ\in R^{m\times m} ΣRm×m是多维随机变量的协方差矩阵,如果协方差矩阵是单位向量,也就是各维度独立同分布,马氏距离就变成了欧氏距离。如果是单个数据点 x x x, 则马氏距离为: d M = ( x − μ ) T Σ − 1 ( x − μ ) d_{M} = \sqrt{(x-\mu)^T\Sigma^{-1}(x-\mu)} dM=(xμ)TΣ1(xμ) , 其中 μ ∈ R m \mu \in R^m μRm为样本均值。

观察

  1. 两个变量拥有不同的单位标准,也就是有不同的scale。在普通的欧氏距离中,这将会算作相同的差距。
  2. 先做归一化来消除这种维度间scale不同的问题,但是样本分布也会影响分类。

动机

只需要将变量按照主成分进行旋转,让维度间相互独立,然后进行标准化,让维度同分布。由主成分分析可知,由于主成分就是特征向量方向,每个方向的方差就是对应的特征值,所以只需要按照特征向量的方向旋转,然后缩放特征值倍就可以了。

推导

  1. 旋转数据至主成分方向(特征向量的方向), F = ( F 1 , F 2 , ⋯   , F m ) F=(F_1, F_2, \cdots, F_m) F=(F1,F2,,Fm)为新的坐标,

  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值