USACO算法系列二十五——fence8(续)

     上次这道题,我采用了深度搜索剪枝的方法,但是在第四个超时了,而且不是一般的严重,我又对它做了以下的转化和剪枝。第一这道题最后要求的是得到的需求木块数量最多,不是要求木料的总面积最多。因此得出一个结论,裁剪小的木块能得到裁剪大的木块的数量更多,更容易得出优化的结果。因此可以对他们先排序,再进行裁剪。其次:

  1. 很容易就能注意到,由于每块rail的价值是相等的——也就是说切小的要比切大的来的划算。那么我们在搜索能否切出i个rail的方案是自然要选最小的i个rail来切。
  2. 经过一些实验可以发现,先切大的rail比先切小的rail更容易提前出解。同样,[先切小的board比先切大的board更容易提前出解?]{注:好像先切大的board要比先切小的更快}。{*我的程序先切小再切大第5个点就TLE了,而先切大再切小就快很多,见C++程序.{跟我一样,握个手,一定要先大后小!!!}}
  3. 由于r最大可能是1023,但是rail长度的范围却只有0~128,这点提醒了我们有很多rail的长度会是相同的。所以我们要避免冗余,优化搜索顺序。若有rail[i+1]=rail[i],则rail[i+1]对应的board一定大于等于rail[i]对应的board。可以通过这种方法剪掉很多冗余的枝条。
  4. 相应的,如果board[i]=board[i+1],那么从board[i]切下的最大的rail一定大于等于从board[i+1]切下的最大的rail。
  5. 对于切剩下的board(无法再切下rail),统计一下总和。如果这个值大于board长度的总和减去rail长度的总和,一定无解,可以剪枝。这个剪枝最关键

                                                                               ——引自别人的解题报告

     不过他们的方法是验证自己的结果能否通过,而不是采用类似深度搜索的方法。因此通过了。而我的即使在最大化剪枝以后,还是没办法通过。其实也就差几百毫秒。代码如下:

     运行结果如下:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值