ML_03decision tree

决策树通常用来处理分类问题,回归问题也可以处理如CART。最基本的思想是:对给定的数据进行一个特征的熵值化,从而进行判断;建立树形结构,自顶向下做出分类判断。

下面是展示最基础的决策树代码(利用信息增益作为判断依据ID3):

from math import log
import operator

# 计算给定数据集的香农熵
def calcShannonEnt(dataSet):
    numEntries = len(dataSet)
    labelCounts = {}
    for featVex in dataSet:
        # 取键值对最后一列的数值
        currentLabel = featVex[-1]
        if currentLabel not in labelCounts.keys():
            labelCounts[currentLabel] = 0
        labelCounts[currentLabel] += 1
    shannonEnt = 0.0
    for key in labelCounts:
        prob = float(labelCounts[key])/numEntries
        shannonEnt -= prob * log(prob, 2)

    return shannonEnt

def createDataSet():
    dataSet = [[1, 1, 'yes'],
               [1, 1, 'yes'],
               [1, 0, 'no'],
               [0, 1, 'no'],
               [0, 1, 'no']]
    labels = ['no surfacing', 'flippers']
    return dataSet, labels

# 按照给定特征划分数据集
def splitDataSet(dataSet, axis, value):
    retDataSet = []
    for featVec in dataSet:
        if featVec[axis] == value:
            # 从第0个位置截取到axis位置
            reducedFeatVec = featVec[:axis]
            reducedFeatVec.extend(featVec[axis+1:])
            retDataSet.append(reducedFeatVec)
    return retDataSet

# 选择最后的数据集划分方式
def chooseBestFeatureToSqlit(dataSet):
    numFeatures = len(dataSet[0]) - 1
    baseEntropy = calcShannonEnt(dataSet)
    bestInfoGain = 0.0
    bestFeature = -1
    for i in range(numFeatures):
        featList = [example[i] for example in dataSet]
        uniqueVals = set(featList)
        newEntropy = 0.0
        for value in uniqueVals:
            # 进行数据集的划分
            subDataSet = splitDataSet(dataSet, i , value)
            prob = len(subDataSet)/float(len(dataSet))
            newEntropy += prob * calcShannonEnt(subDataSet)
        # 计算信息增益
        infoGain = baseEntropy - newEntropy
        if(infoGain > bestInfoGain):
            bestInfoGain = infoGain
            bestFeature = i
    # 返回第几个特征是最好的判断特征作为数据集划分方式
    return bestFeature
# 标签出现频率
def majotrityCnt(classList):
    classCount = {}
    for vote in classList:
        if vote not in classCount.keys():
            classCount[vote] = 0
            classCount[vote] += 1
    sortedClassCount = sorted(classCount.items(),\
                                  key=operator.itemgetter(1), reverse=True)
    return sortedClassCount[0][0]

# 创建树的函数代码
def createTree(dataSet, labels):
    classList = [example[-1] for example in dataSet]
    if classList.count(classList[0]) == len(classList):
        return classList[0]
    if len(dataSet[0]) == 1:
        return majotrityCnt(classList)
    bestFeat = chooseBestFeatureToSqlit(dataSet)
    bestFeatlabel = labels[bestFeat]
    myTree = {bestFeatlabel:{}}
    # 从labelss数组删除用来划分的类标签
    del(labels[bestFeat])
    featValues = [example[bestFeat] for example in dataSet]
    # 去掉数组里面重复的值(集合的概念就是没有重复值)
    uniqueVals = set(featValues)
    for value in uniqueVals:
        # 拷贝数组labels,使其不会丢失其他属性
        subLabels = labels[:]
        myTree[bestFeatlabel][value] = createTree(splitDataSet\
                                                      (dataSet, bestFeat, value),subLabels)

    return myTree

if __name__ == '__main__':
    myDat, labels = createDataSet()
    Ent = calcShannonEnt(myDat)
    choice = chooseBestFeatureToSqlit(myDat)
    # print(choice)
    # print(myDat)
    myTree = createTree(myDat, labels)
    print(myTree)

ID3算法会偏重特征属性分类的的特征,建立的模型较为复杂容易产生过拟合。C4.5算法使用信息增益比来作为选择特征。CART分类树是利用基尼指数来选择最优特征(CART回归树适用均方误差来作为loss函数)。

决策树的几个优点:

1、决策树算法易理解,机理解释起来简单。而且带有可解释性。

2、对缺失值不敏感。

3、可以剪枝,有效降低树形复杂度,达到性能与模型复杂度的平衡。

 

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值