RAG 常见分块策略全解析:一文了解7种分块方法【附代码】

在这里插入图片描述

引言

在检索增强生成(RAG)系统中,分块策略是决定系统性能的基石。本文基于 2023 - 2025 年最新研究成果,深度剖析 12 种分块方法的实现原理,并通过 Python 代码演示其应用场景。


大家好,我是大 F,深耕AI算法十余年,互联网大厂技术岗。
知行合一,不写水文,喜欢可关注,分享AI算法干货、技术心得。
欢迎关注《大模型理论和实战》《DeepSeek技术解析和实战》,一起探索技术的无限可能!

【大模型篇】更多阅读
【大模型篇】万字长文从OpenAI到DeepSeek:大模型发展趋势及原理解读
【大模型篇】目前主流 AI 大模型体系全解析:架构、特点与应用
【大模型篇 】 Grok-3 与 DeepSeek 的技术架构与性能分析
【大模型篇】速读版DeepSeek核心技术解密:与 GPT-4、Claude、LLaMA 技术路线差异对比分析

一、为什么需要分块?

1.1 上下文窗口限制

RAG 模型中的检索部分会从文档库中检索与用户查询相关的文本块,这些文本块将作为上下文输入到生成模型中。然而,生成模型(如大型语言模型,LLM)的上下文窗口是有限的,这意味着它能够处理的输入文本长度是有限制的。例如,许多 LLM 的上下文窗口最多只能容纳 2048 个令牌(tokens)。如果检索到的文本块过大,超出了这个限制,就无法完整地输入到生成模型中,从而可能导致生成的响应不准确或不完整。通过将文档分块,可以确保每个块的大小都在生成模型的上下文窗口范围内,从而使模型能够有效地处理和生成高质量的响应。

大型语言模型(LLM)存在严格的 Token 限制:

  • GPT - 4:32K Token
  • Claude 3:200K Token
  • Gemini 1.5:1M Token

尽管上下文窗口持续扩大,但处理 100 页以上的文档仍需要分块机制。以 1M Token 的 Gemini 1.5 为例:

  • 单 Token ≈ 0.75 个英文单词
  • 1M Token ≈ 75 万单词 ≈ 750 页 A4 纸
    实际业
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

大F的智能小课

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值