大家好,我是大 F,深耕AI算法十余年,互联网大厂核心技术岗。
知行合一,不写水文,喜欢可关注,分享AI算法干货、技术心得。
【专栏介绍】:
欢迎关注《大模型理论和实战》、《DeepSeek技术解析和实战》,一起探索技术的无限可能!【大模型篇】更多阅读:
【大模型篇】万字长文从OpenAI到DeepSeek:大模型发展趋势及原理解读
【大模型篇】目前主流 AI 大模型体系全解析:架构、特点与应用
【大模型篇 】 Grok-3 与 DeepSeek 的技术架构与性能分析
【大模型篇】速读版DeepSeek核心技术解密:与 GPT-4、Claude、LLaMA 技术路线差异对比分析
一、基础概念与原理
1. Transformer是什么?与传统序列模型(如RNN、LSTM)的区别是什么?
-
Transformer定义:
Transformer是一种基于 自注意力机制(Self-Attention) 的深度学习模型架构,由Vaswani等人在2017年提出,最初用于机器翻译任务。 -
核心区别:
维度 RNN/LSTM Transformer 并行性 顺序处理,无法并行化 全序列并行计算 长程依赖 依赖门控机制,易丢失长程信息 自注意力机制直接建模全局依赖 计算效率 低效(O(n)时间步) 高效(O(n²)复杂度但可并行)
示例:
在翻译长句子时,Transformer能直接捕捉句首和句尾的关系,而RNN可能因梯度消失/爆炸丢失信息。
2. 为什么Transformer能成为自然语言处理(NLP)的主流架构?
- 核心优势:
- 并行计算:加速模型训练和推理。
- 全局上下文建模:通过自注意力捕捉任意位置依赖。
- 可扩展性:支持大规模预训练(如BERT、GPT)。
案例:
- BERT通过Transformer Encoder实现双向语言建模,刷新多项NLP任务性能。
- GPT系列基于Transformer Decoder实现生成式任务。
3. Transformer的核心流程包含哪些阶段?各阶段的作用是什么?
- 核心流程:
- 输入编码(Embedding) :将输入转换为向量(Token + Position Embedding)。
- 自注意力计算(Self-Attention) :计算序列内各位置的关联权重。
- 前馈网络(Feed Forward) :对每个位置进行非线性变换。
- 残差连接与层归一化:缓解梯度消失,加速收敛。
流程图:
输入序列 → Embedding → 多头注意力 → 前馈网络 → 输出
4. Transformer与迁移学习(Transfer Learning)的结合方式?
- 典型应用:
- 预训练+微调:在大规模语料上预训练(如BERT),在特定任务(如文本分类)上微调。
- 领域适配:将通用预训练模型迁移到垂直领域(如医疗、法律)。
案例:
- BioBERT:在医学文献上继续预训练BERT,提升医疗实体识别效果。
二、架构设计与组件
5. 经典Transformer的架构图是什么?Encoder与Decoder如何协作?
- 架构图:
Encoder:输入 → 多头注意力 → 前馈网络 → 输出
Decoder:输入 → 掩码多头注意力 → 交叉注意力(Encoder输出) → 前馈网络 → 输出
- 协作方式:
Encoder提取输入特征,Decoder基于Encoder输出和掩码注意力生成目标序列。
6. Transformer的多头注意力机制(Multi-Head Attention)有何改进?
- 原理:
将输入拆分为多个子空间(Heads),分别计算注意力后拼接结果。 - 优势:
- 捕捉不同子空间的语义信息(如语法、语义)。
- 增强模型表达能力。
代码示例:
# PyTorch实现多头注意力
import torch.nn as nn
mha = nn.MultiheadAttention(embed_dim=512, num_heads=8)
output, _ = mha(query, key, value)
7. 位置编码(Positional Encoding)的作用是什么?有哪些实现方式?
- 作用:为序列引入位置信息,弥补自注意力机制的位置无关性。
- 实现方式: