基于大模型的 SDL 需求阶段安全需求挖掘实战指南 —— 四步法实现从业务需求到风险矩阵的智能转换

在软件开发生命周期(SDL)中,需求阶段的安全需求挖掘至关重要,它直接影响到软件的安全性和可靠性。随着大模型技术的发展,我们可以利用其强大的自然语言处理和知识图谱能力,实现从业务需求到风险矩阵的智能转换。本文将介绍一种基于大模型的四步法,帮助安全团队高效挖掘安全需求。

一、业务需求解析:大模型驱动的语义理解

目标 :将自然语言描述的业务需求转化为结构化安全要素。

方法

  1. 需求文本预处理 :使用大模型(如 GPT - 4、文心一言)对需求文档进行分词、实体识别和关系抽取,提取关键业务场景、功能模块和数据流。

  2. 安全要素标注 :基于预训练的安全知识库(如 CWE、OWASP Top 10),自动标注需求中隐含的资产类型(用户数据、支付接口等)和访问边界(权限、通信协议等)。

  3. 结构化输出 :生成包含业务目标、功能组件、数据交互的 JSON 格式结构化数据,为后续风险分析提供输入。

工具示例

Pytho

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

大F的智能小课

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值