脑信号医学应用中的数据分析技术
1. 脑信号处理
脑电(EEG)原始数据可通过各种信号处理方法进行转换,以识别疾病、生成有用的通信或控制命令。脑信号通常通过放置在受试者头皮上的电极无创采集,其中 10/20 国际系统是最广泛使用的电极定位方法。电极的数量和位置取决于具体应用类型。采集到的信号会被放大以便进行电子处理,并经过滤波以去除电力线干扰、射频干扰、运动伪影等电噪声。同时,记录的持续 EEG 可能会进行预处理,以去除由眼部、肌肉和心脏活动产生的伪影。
1.1 预处理
在预处理阶段,可使用独立成分分析(ICA)、主成分分析(PCA)、奇异值分解(SVD)、因子分析、非负矩阵分解(NMF)、稀疏成分分析(SCA)等技术从放大后的脑信号中去除伪影,以提高信号的信噪比。下面简要介绍广泛使用的 ICA 和 PCA。
- 独立成分分析(ICA) :将数据转换为多个独立成分。在脑信号中,每个电极记录来自多个神经源的信号。ICA 假设记录的信号是独立源的线性组合,其表达式如下:
[y_i(t) = a_{i1}s_1(t)+ a_{i2}s_2(t)+ \cdots + a_{in}s_n(t);\quad i = 1,2,\cdots n]
其中 (s_i) 是第 (i) 个源,(a_{in}) 是常数。该式可以矩阵形式表示为:
[y = As]
其中 (A) 是混合矩阵。如果基于源变量 (s) 独立且非高斯的假设计算出混合矩阵,就可以找到源信号。
- 主成分分析(PCA) :将相关变量转换为不相关变量,在减少数据量的同时尽量减少信息损失。这些不相关变
超级会员免费看
订阅专栏 解锁全文
3091

被折叠的 条评论
为什么被折叠?



