21、脑信号医学应用中的数据分析技术

脑信号医学应用中的数据分析技术

1. 脑信号处理

脑电(EEG)原始数据可通过各种信号处理方法进行转换,以识别疾病、生成有用的通信或控制命令。脑信号通常通过放置在受试者头皮上的电极无创采集,其中 10/20 国际系统是最广泛使用的电极定位方法。电极的数量和位置取决于具体应用类型。采集到的信号会被放大以便进行电子处理,并经过滤波以去除电力线干扰、射频干扰、运动伪影等电噪声。同时,记录的持续 EEG 可能会进行预处理,以去除由眼部、肌肉和心脏活动产生的伪影。

1.1 预处理

在预处理阶段,可使用独立成分分析(ICA)、主成分分析(PCA)、奇异值分解(SVD)、因子分析、非负矩阵分解(NMF)、稀疏成分分析(SCA)等技术从放大后的脑信号中去除伪影,以提高信号的信噪比。下面简要介绍广泛使用的 ICA 和 PCA。
- 独立成分分析(ICA) :将数据转换为多个独立成分。在脑信号中,每个电极记录来自多个神经源的信号。ICA 假设记录的信号是独立源的线性组合,其表达式如下:
[y_i(t) = a_{i1}s_1(t)+ a_{i2}s_2(t)+ \cdots + a_{in}s_n(t);\quad i = 1,2,\cdots n]
其中 (s_i) 是第 (i) 个源,(a_{in}) 是常数。该式可以矩阵形式表示为:
[y = As]
其中 (A) 是混合矩阵。如果基于源变量 (s) 独立且非高斯的假设计算出混合矩阵,就可以找到源信号。
- 主成分分析(PCA) :将相关变量转换为不相关变量,在减少数据量的同时尽量减少信息损失。这些不相关变

【顶级EI完整复现】【DRCC】考虑N-1准则的分布鲁棒机会约束低碳经济调度(Matlab代码实现)内容概要:本文介绍了名为《【顶级EI完整复现】【DRCC】考虑N-1准则的分布鲁棒机会约束低碳经济调度(Matlab代码实现)》的技术资源,聚焦于电力系统中低碳经济调度问题,结合N-1安全准则与分布鲁棒机会约束(DRCC)方法,提升调度模型在不确定性环境下的鲁棒性和可行性。该资源提供了完整的Matlab代码实现,涵盖建模、优化求解及仿真分析全过程,适用于复杂电力系统调度场景的科研复现与算法验证。文中还列举了大量相关领域的研究主题与代码资源,涉及智能优化算法、机器学习、电力系统管理、路径规划等多个方向,展示了广泛的科研应用支持能力。; 适合人群:具备一定电力系统、优化理论和Matlab编程基础的研究生、科研人员及从事能源调度、智能电网相关工作的工程师。; 使用场景及目标:①复现高水平期刊(如EI/SCI)关于低碳经济调度的研究成果;②深入理解N-1安全约束与分布鲁棒优化在电力调度中的建模方法;③开展含新能源接入的电力系统不确定性优化研究;④为科研项目、论文撰写或工程应用提供可运行的算法原型和技术支撑。; 阅读建议:建议读者结合文档提供的网盘资源,下载完整代码与案例数据,按照目录顺序逐步学习,并重点理解DRCC建模思想与Matlab/YALMIP/CPLEX等工具的集成使用方式,同时可参考文中列出的同类研究方向拓展研究思路。
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符  | 博主筛选后可见
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值