28、图像处理:归一化相关性

图像处理:归一化相关性

1. 引言

在图像处理领域,归一化相关性是一种常用的技术,用于在图像中查找与给定模板匹配的区域。本文将介绍几种基于 CUDA 的归一化相关性实现方法,并对它们的性能进行分析。假设像素为 8 位灰度值,CUDA 实现中使用纹理来处理与模板进行比较的图像,原因如下:
- 纹理单元能优雅且高效地处理边界条件。
- 纹理缓存可在重用时聚合外部带宽,因为在计算附近的相关性值时会发生重用。
- 纹理缓存的二维局部性与相关性搜索算法的访问模式非常匹配。

接下来将探讨使用纹理和常量内存存储模板的权衡。

2. 简单的纹理 - 纹理实现

2.1 实现原理

第一个归一化互相关的实现使用纹理单元读取图像和模板的值。该实现未经过优化,甚至没有预先计算模板统计信息的优化,但易于理解,可作为更高级优化实现的基础。

2.2 代码实现

__global__ void 
corrTexTex2D_kernel( 
    float *pCorr, size_t CorrPitch, 
    float cPixels,
    int xOffset, int yOffset,
    int xTemplate, int yTemplate,
    int wTemplate, int hTemplate,
    float xUL, float yUL, int w, int h )
{
    size_t row = blockIdx.y*blockDim.y + threadIdx.y;
    
基于径向基函数神经网络RBFNN的自适应滑模控制学习(Matlab代码实现)内容概要:本文介绍了基于径向基函数神经网络(RBFNN)的自适应滑模控制方法,并提供了相应的Matlab代码实现。该方法结合了RBF神经网络的非线性逼近能力和滑模控制的强鲁棒性,用于解决复杂系统的控制问题,尤其适用于存在不确定性和外部干扰的动态系统。文中详细阐述了控制算法的设计思路、RBFNN的结构与权重更新机制、滑模面的构建以及自适应律的推导过程,并通过Matlab仿真验证了所提方法的有效性和稳定性。此外,文档还列举了大量相关的科研方向和技术应用,涵盖智能优化算法、机器学习、电力系统、路径规划等多个领域,展示了该技术的广泛应用前景。; 适合人群:具备一定自动控制理论基础和Matlab编程能力的研究生、科研人员及工程技术人员,特别是从事智能控制、非线性系统控制及相关领域的研究人员; 使用场景及目标:①学习和掌握RBF神经网络与滑模控制相结合的自适应控制策略设计方法;②应用于电机控制、机器人轨迹跟踪、电力电子系统等存在模型不确定性或外界扰动的实际控制系统中,提升控制精度与鲁棒性; 阅读建议:建议读者结合提供的Matlab代码进行仿真实践,深入理解算法实现细节,同时可参考文中提及的相关技术方向拓展研究思路,注重理论分析与仿真验证相结合。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值