模板-----------线段树

支持区间修改及查询,适用于多次修改、多次询问;倍增RMQ算法仅支持区间查询,不支持区间修改。

练手题:

1.洛谷3352

2.codevs1080、1081、1082

#include<iostream>
#include<algorithm>
#include<cstdio>
#include<cmath>
#include<cstring>
#define ll long long
using namespace std;
ll n,m,k,x,y,ans;
ll a[100010];
struct mc
{
	ll l,r,num,down;
}tree[400000];
void build(ll l,ll r,ll num)
{
	if(l==r)
	{
		tree[num].l=l;
		tree[num].r=r;
		tree[num].num=a[l];
		return;
	}
	tree[num].l=l;
	tree[num].r=r;
	ll mid=(l+r)>>1;
	ll t=num*2;
	build(l,mid,t);
	build(mid+1,r,t+1);
	tree[num].num=tree[t].num+tree[t+1].num;
}

void down(const ll num)
{
	ll l=tree[num].l;
	ll r=tree[num].r;
	if (l==r)
	{
		tree[num].down=0;
		return;
	}
	ll t=num*2;
	l=tree[t].l;
	r=tree[t].r;
	tree[t].num+=(r-l+1)*tree[num].down;
	tree[t].down+=tree[num].down;
	tree[t+1].num+=(r-l+1)*tree[num].down;
	tree[t+1].down+=tree[num].down;
	tree[num].down=0;
}

void add(ll &x,ll &y,ll num,ll k)
{
	ll l=tree[num].l,r=tree[num].r;
	if (l>=x&&r<=y)
	{
		tree[num].num+=(r-l+1)*k;
		tree[num].down+=k;
		return;
	}
	if (tree[num].down) down(num);
	ll mid=(l+r)/2;
	ll t=num*2;
	if (y<=mid) add(x,y,t,k);
	else if (x>mid) add(x,y,t+1,k);
	else 
	{
		add(x,y,t,k);
		add(x,y,t+1,k);
	}
	tree[num].num=tree[t].num+tree[t+1].num;
}

void ask(ll l,ll r,ll num)
{
	if (tree[num].down!=0) down(num);
	if (tree[num].l>=x&&tree[num].r<=y)
	{
		ans+=tree[num].num;
		return;
	}
	ll mid=(l+r)/2;
	ll t=num*2;
	if (y<=mid) ask(l,mid,t);
	else if (x>mid) ask(mid+1,r,t+1);
	else
	{
		ask(l,mid,t);
		ask(mid+1,r,t+1);
	}
}

int main()
{
	ll n,m;
	cin>>n>>m;
	for (ll i=1;i<=n;i++)
	cin>>a[i];
	build(1,n,1);
	ll p;
	for (ll i=1;i<=m;i++)
	{
		cin>>p;
		if (p==1)
		{
			cin>>x>>y>>k;
			add(x,y,1,k);
		}else
		{
			cin>>x>>y;
			ans=0;
			ask(1,n,1);
			cout<<ans<<endl;
		}
	}
	return 0;
}


内容概要:本文详细探讨了基于樽海鞘算法(SSA)优化的极限学习机(ELM)在回归预测任务中的应用,并与传统的BP神经网络、广义回归神经网络(GRNN)以及未优化的ELM进行了性能对比。首先介绍了ELM的基本原理,即通过随机生成输入层与隐藏层之间的连接权重及阈值,仅需计算输出权重即可快速完成训练。接着阐述了SSA的工作机制,利用樽海鞘群体觅食行为优化ELM的输入权重和隐藏层阈值,从而提高模型性能。随后分别给出了BP、GRNN、ELM和SSA-ELM的具体实现代码,并通过波士顿房价数据集和其他工业数据集验证了各模型的表现。结果显示,SSA-ELM在预测精度方面显著优于其他三种方法,尽管其训练时间较长,但在实际应用中仍具有明显优势。 适合人群:对机器学习尤其是回归预测感兴趣的科研人员和技术开发者,特别是那些希望深入了解ELM及其优化方法的人。 使用场景及目标:适用于需要高效、高精度回归预测的应用场景,如金融建模、工业数据分析等。主要目标是提供一种更为有效的回归预测解决方案,尤其是在处理大规模数据集时能够保持较高的预测精度。 其他说明:文中提供了详细的代码示例和性能对比图表,帮助读者更好地理解和复现实验结果。同时提醒使用者注意SSA参数的选择对模型性能的影响,建议进行参数敏感性分析以获得最佳效果。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值