674. 最长连续递增序列

该博客讨论了一种算法,用于在给定的整数数组中找到最长的连续递增子序列。算法通过遍历数组并比较相邻元素来实现,返回序列的长度。示例展示了如何在不同情况下应用此算法。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

674. 最长连续递增序列

给定一个未经排序的整数数组,找到最长且 连续递增的子序列,并返回该序列的长度。

连续递增的子序列 可以由两个下标 l 和 r(l < r)确定,如果对于每个 l <= i < r,都有 nums[i] < nums[i + 1] ,那么子序列 [nums[l], nums[l + 1], …, nums[r - 1], nums[r]] 就是连续递增子序列。

示例 1:

输入:nums = [1,3,5,4,7]
输出:3
解释:最长连续递增序列是 [1,3,5], 长度为3。
尽管 [1,3,5,7] 也是升序的子序列, 但它不是连续的,因为 5 和 7 在原数组里被 4 隔开。 

示例 2:

输入:nums = [2,2,2,2,2]
输出:1
解释:最长连续递增序列是 [2], 长度为1。

提示:

0 <= nums.length <= 104
-109 <= nums[i] <= 109

class Solution {
    public int findLengthOfLCIS(int[] nums) {
        if(nums.length==0) return 0;
        int res = 1;
        int count = 1;
        for(int i=1;i<nums.length;i++){
            if(nums[i]<=nums[i-1]){
                res = Math.max(res,count);
                count = 1;
            }else{
                count++;
            }  
        }
        res = Math.max(res,count);
        return res;
    }
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值