图神经网络简述

图神经网络

先导

同济子豪兄:斯坦福CS224W
课程链接

图神经网络应用

  • social networks: 通过分析个人的社交网络以及在网络中的活动, 预测用户的未来行为或偏好
  • knowledge graphs: 预测知识图谱中实体之间的未知关系,增强图谱的丰富性
  • Internet: 网页是结点, 网页之间的引用是边
  • communication networks
  • economic networks
  • repulatory networtks: 分析基因与蛋白质的调控网络, 预测蛋白质的三维结构和功能。或者是分析基因调控网络,理解基因如何控制生物过程
  • scene gprahs: 一个场景由不同的物体组层, 每个物体是一个结点, 而物体在场景中与其他物品的关系则是边
  • code graphs(UML): 类是一个结点, 而类之间的关系则是边. 或者是人工智能张量的计算图
  • molecules: 原子/分子作为结点, 而原子/分子之间的作用力为边, 通过分析化学分子的结构图,预测其药理特性
  • 3D shapes: 3D模型使用点在空间的位置作为结点, 而点和点之间的线作为边, 由多条边构成一个面

什么是图神经网络

对于由结点和边组成的图(graph)则是用gcn(graph convolution net)来处理
图神经网络由

如何对图(relation graph)进行数据挖掘/机器学习/数据分析

传统非图算法

传统机器学习算法假设前提是数据样本之间是独立同分布, 样本之间没有关联, 例如分类和回归

传统机器学习

其他神经网络处理的数据也和图不一样
CNN用于处理一般矩阵的信息, 例如图像(image)
RNN系列(RNN, LSTM, Transformer)用于处理时序(序列)信息

图的特点

而如何使用神经网络来处理关于图(relation graph)
如果要处理图, 那么要先了解图的特征或者是要处理图的特征:

  • 任意尺寸输入: 设计的神经网络算法应该能处理任意尺寸的输入和复杂的拓扑结构(即无空间结构)

  • 没有固定的参考点: 与图像的矩阵不同, 一般图不会有起点, 不同顺序的输入得到的结果应该是一致的, 不会顺序而改变神经网络对于图的处理

  • 动态变化: 由于图表示的是实体之间的关系, 因此图神经网络需要能够适应图的动态变化,如社交网络中的新成员加入或通信网络中的连接变化

  • 多模态特征: 图的关系可能多个模态的特征, 包括图像, 文本, 视频等

  • 边的多样性和方向性:图中的边可能表示不同类型的关系,如社交关系、物理连接或信息流。
    边可能具有方向性,表示关系的不对称性。

图神经网络

图神经网络(Graph Neural Networks, GNNs)是一种专门用于处理图结构数据的神经网络。与传统神经网络不同,GNNs能够直接在图结构上进行学习,有效地捕捉节点间的复杂关系。这使得GNNs在社交网络、知识图谱、分子结构等领域具有巨大的应用潜力。
图神经网络总体结构:

图神经网络

输入一张图, 通过神经网络的处理, 希望从图中获得一些信息, 例如结点的标签, 通过已有的结点之间的关系找到结点之间新的关系, 生成子图等.

图嵌入

图中的信息是结点和结点之间的关系, 但是神经网络处理都vector或者是matrix, 因此需要把图转换成vector或者是matrix一个关键步骤, 好的转换方法能够便于后续的操作
具体地说, 图嵌入就是把结点映射到N-维空间, 相似的结点在N-维空间的向量表示应该也是相似的, 这样对于神经网络的训练, 相似的结点才能使得神经网络学到相同的特征
在这里插入图片描述

端到端的学习

端到端学习是一种直接从输入数据到最终输出(如分类、预测)的学习方法,它尝试减少或消除预处理和特征工程的需求。在图神经网络中,端到端学习意味着直接从原始图数据(节点和边)学习到目标任务(如节点分类、图分类、链接预测)的输出。
从直观理解, 在传统的机器学习方法中,需要手动提取特征,然后将这些特征用于学习模型。例如,在处理图数据时,你可能需要首先确定节点的重要属性或边的类型。但在端到端学习中,这一过程被神经网络自动化了。网络能够自动识别和学习输入数据中对最终任务有用的特征。

在图神经网络中,端到端学习的一个关键概念是节点表示学习,即自动学习描述每个节点的高维向量(嵌入)。这些嵌入捕捉了节点的特性和其在图中的结构位置。端到端学习使得GNN能够直接从图结构中学习到如何有效表示节点和边,进而用于各种下游任务,如:

  • 节点分类:预测图中每个节点的类别。
  • 图分类:判断整个图的类别或属性。
  • 链接预测:预测图中节点之间是否应存在边。
    端到端的学习
  • 14
    点赞
  • 23
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
卷积神经网络(Convolutional Neural Network,CNN)是一种深度学习模型,主要用于像识别和计算机视觉任务。下面是卷积神经网络的发展简述: 1. 早期卷积神经网络:卷积神经网络最早由Yann LeCun等人在1989年提出,用于手写数字识别。这些早期的网络结构包括卷积层、池化层和全连接层。 2. LeNet-5:LeNet-5是一个经典的卷积神经网络模型,由Yann LeCun等人在1998年提出。它在手写数字识别任务上取得了很好的效果,并成为后续卷积神经网络的基础。 3. AlexNet:AlexNet是由Alex Krizhevsky等人在2012年提出的卷积神经网络模型。它在ImageNet像分类挑战赛上取得了突破性的成果,引领了深度学习在计算机视觉领域的发展。 4. VGGNet:VGGNet是由Karen Simonyan和Andrew Zisserman在2014年提出的卷积神经网络模型。它采用了更深的网络结构,包含16或19层卷积层,具有较小的卷积核尺寸,使得网络更加精细。 5. GoogLeNet:GoogLeNet是由Google团队在2014年提出的卷积神经网络模型。它采用了Inception模块,通过并行使用不同尺寸的卷积核和池化操作,提高了网络的效果和计算效率。 6. ResNet:ResNet是由Kaiming He等人在2015年提出的卷积神经网络模型。它引入了差连接,解决了深层网络训练中的梯度消失和梯度爆炸问题,使得网络可以更深。 7. MobileNet:MobileNet是由Google团队在2017年提出的卷积神经网络模型。它采用了深度可分离卷积,减少了参数量和计算量,适用于移动设备等资源受限的场景。 8. EfficientNet:EfficientNet是由Mingxing Tan和Quoc V. Le在2019年提出的卷积神经网络模型。它通过自动缩放网络结构的不同维度(深度、宽度和分辨率),在保持模型有效性的同时提高了性能。 以上是卷积神经网络发展的简述,下面是一些相关问题:

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值