7-9 六度空间(30 分)
“六度空间”理论又称作“六度分隔(Six Degrees of Separation)”理论。这个理论可以通俗地阐述为:“你和任何一个陌生人之间所间隔的人不会超过六个,也就是说,最多通过五个人你就能够认识任何一个陌生人。”如图1所示。
图1 六度空间示意图
“六度空间”理论虽然得到广泛的认同,并且正在得到越来越多的应用。但是数十年来,试图验证这个理论始终是许多社会学家努力追求的目标。然而由于历史的原因,这样的研究具有太大的局限性和困难。随着当代人的联络主要依赖于电话、短信、微信以及因特网上即时通信等工具,能够体现社交网络关系的一手数据已经逐渐使得“六度空间”理论的验证成为可能。
假如给你一个社交网络图,请你对每个节点计算符合“六度空间”理论的结点占结点总数的百分比。
输入格式:
输入第1行给出两个正整数,分别表示社交网络图的结点数N(1<N≤104,表示人数)、边数M(≤33×N,表示社交关系数)。随后的M行对应M条边,每行给出一对正整数,分别是该条边直接连通的两个结点的编号(节点从1到N编号)。
输出格式:
对每个结点输出与该结点距离不超过6的结点数占结点总数的百分比,精确到小数点后2位。每个结节点输出一行,格式为“结点编号:(空格)百分比%”。
输入样例:
10 9
1 2
2 3
3 4
4 5
5 6
6 7
7 8
8 9
9 10
输出样例:
1: 70.00%
2: 80.00%
3: 90.00%
4: 100.00%
5: 100.00%
6: 100.00%
7: 100.00%
8: 90.00%
9: 80.00%
10: 70.00%
#include <iostream>
#include "cstring"
#include <stdio.h>
#include "iomanip"
#include "vector"
#include "cmath"
#include "stack"
#include "algorithm"
#include <math.h>
#include "map"
#include "queue"
using namespace std;
int Map[10003][10003];
struct node
{
int n;
int d;
node(){}
node(int a,int b){n=a;d=b;}
};
int main()
{
freopen("a.txt","r",stdin );
int n,v;
cin>>n>>v;
for(int i=0;i<n;i++)
{
int a,b;
cin>>a>>b;
Map[a][b]=1;
Map[b][a]=1;
}
for(int i=1;i<=n;i++)
{
int d[10003],visit[10003]={0};
memset(d,0x7F,sizeof(d));
queue <node> q;
q.push( node(i,0));
while (!q.empty())
{
node t=q.front();
q.pop();
int rn,rd;
rn=t.n;
rd=t.d;
if(visit[rn]==1)
continue;
visit[rn]=1;
for(int j=1;j<=n;j++)
{
if(Map[rn][j]==1)
{
t=node(j,rd+1);
q.push(t);
d[j]=min(d[j],rd+1);
}
}
}
int sum=0;
for(int j=1;j<=n;j++)
{
if(d[j]<=6)
sum++;
}
double sdsds=1.0*sum/n;
cout<<i<<": ";
cout<<fixed<<setprecision(2)<<sdsds*100<<"%";
if(i!=n)
cout<<endl;
}
return 0;
}