Scikit-learn作为Python中最流行的机器学习库,其熟练掌握程度是面试官评价候选者机器学习能力的重要依据。本篇博客将深入浅出地探讨Python机器学习面试中与Scikit-learn相关的常见问题、易错点,以及如何避免这些问题,同时附上代码示例以供参考。
一、常见面试问题
1. 数据预处理
面试官可能会询问如何使用Scikit-learn进行特征缩放、缺失值处理、特征选择等预处理操作。准备如下示例:
python
from sklearn.preprocessing import StandardScaler, Imputer, SelectKBest, chi2
# 特征缩放
scaler = StandardScaler()
scaled_data = scaler.fit_transform(data)
# 缺失值处理
imputer = Imputer(strategy='mean')
imputed_data = imputer.fit_transform(data)
# 特征选择
selector = SelectKBest(chi2, k=10)
selected_features = selector.fit_transform(data, target)
2. 模型训练与评估
面试官可能要求您展示如何使用Scikit-learn训练模型、交叉验证、计算评估指标。提供如下代码:
python
from sklearn.model_selection import train_test_split, cross_val_score
from sklearn