读取数据并将其转换回“数据”和“标签”
我们将展示现在,如何在数据再次读取以及如何将其拆分成data
和labels
再次:
文件数据 = np 。loadtxt ( “squirrels.txt” )
数据 = file_data [:,:- 1 ]
标签 = file_data [:,2 :]
标签 = 标签。重塑((标签。形状[ 0 ]))
我们将数据文件称为squirrels.txt
,因为我们想象了一种生活在撒哈拉沙漠中的奇怪动物。x 值代表动物的夜视能力,y 值对应毛皮的颜色,从浅褐色变为黑色。我们有3种松鼠,0、1和2。(注意我们的松鼠是想象中的松鼠,与真正的撒哈拉松鼠没有任何关系!)
导入 matplotlib.pyplot 作为 plt
颜色 = (“绿色” 、 “红色” 、 “蓝色” 、 “洋红色” 、 “黄色” 、 “青色” )
n_classes = 3
图, ax = plt 。副区()
为 n_class 在 范围(0 , n_classes ):
斧。分散(数据[标签== n_class , 0 ], 数据[标签== n_class , 1 ],
c =颜色[ n_class ], s = 10 , 标签= str (n_class ))
斧头。set ( xlabel = ‘Night Vision’ ,
ylabel = '毛色从浅褐色到黑色, 0 到 10 ’ ,
title = ‘Sahara Virtual Squirrel’ )
斧头。图例(loc = ‘右上角’ )
输出:
<matplotlib.legend.Legend 在 0x7f1c3f2dfcd0>
我们将在以下代码中训练我们的人工数据:
从 sklearn.model_selection 导入 train_test_split
data_sets = train_test_split ( data ,
labels ,
train_size = 0.8 ,
test_size = 0.2 ,
random_state = 42 #保证每次运行的输出相同
)
train_data , test_data , train_labels , test_labels = data_sets
#
从 sklearn.neighbors 导入 模型import KNeighborsClassifier
# 创建分类器
knn = KNeighborsClassifier ( n_neighbors = 8 )
# 训练
knn 。适合(train_data , train_labels )
# 对测试数据进行测试:
calculated_labels = knn . 预测(测试数据)
计算标签
输出:
数组([2., 0., 1., 1., 0., 1., 2., 2., 2., 2., 0., 1., 0., 0., 1., 0. , 1.,
2., 0., 0., 1., 2., 1., 2., 2., 1., 2., 0., 0., 2., 0., 2., 2., 0. ,
0., 2., 0., 0., 0., 1., 0., 1., 1., 2., 0., 2., 1., 2., 1., 0., 2. ,
1., 1., 0., 1., 2., 1., 0., 0., 2., 1., 0., 1., 1., 0., 0., 0., 0. ,
0., 0., 0., 1., 1., 0., 1., 1., 1., 0., 1., 2., 1., 2., 0., 2., 1. ,
1., 0., 2., 2., 2., 0., 1., 1., 1., 2., 2., 0., 2., 2., 2., 2., 0. ,
0., 1., 1., 1., 2., 1., 1., 1., 0., 2., 1., 2., 0., 0., 1., 0., 1. ,
0., 2., 2., 2., 1., 1., 1., 0., 2., 1., 2., 2., 1., 2., 0., 2., 0. ,
0., 1., 0., 2., 2., 0., 0., 1., 2., 1., 2., 0., 0., 2., 2., 0., 0. ,
1., 2., 1., 2., 0., 0., 1., 2., 1., 0., 2., 2., 0., 2., 0., 0., 2. ,
1., 0., 0., 0., 0., 2., 2., 1., 0., 2., 2., 1., 2., 0., 1., 1., 1. ,
0., 1., 0., 1., 1., 2., 0., 2., 2., 1., 1., 1., 2.])
从 sklearn 导入 指标
打印(“精度:” , 度量。accuracy_score (test_labels , calculated_labels ))
输出:
准确度:0.97
其他有趣的分布
将 numpy 导入****为 np
将 sklearn.datasets 导入****为 ds
数据, 标签 = ds 。make_moons ( n_samples = 150 ,
shuffle = True ,
噪音= 0.19 ,
random_state = None )
数据 += np 。阵列(- NP 。ndarray 。分钟(数据[:,0 ]),
- NP 。ndarray 。分钟(数据[:,1 ))
NP . 数组。min ( data [:, 0 ]), np . 数组。分钟(数据[:, 1 ])
输出:
(0.0, 0.43385925898113253)
导入 matplotlib.pyplot 作为 plt
fig , ax = plt 。子图()
斧头。分散(数据[标签== 0 , 0 ], 数据[标签== 0 , 1 ],
c = ‘orange’ , s = 40 , label = ‘oranges’ )
ax . 散射(数据[标签== 1 , 0 ], 数据[标签== 1 , 1 ],
c ^ = ‘蓝’, s = 40 , 标签= ‘blues’ )
斧头。设置(xlabel = ‘X’ ,
ylabel = ‘Y’ ,
title = ‘Moons’ )
#ax.legend(loc=‘右上角’);
输出:
[文字(0.5, 0, ‘X’), 文字(0, 0.5, ‘Y’), 文字(0.5, 1.0, ‘月亮’)]
我们想要缩放范围内范围内[min, max]
的值[a, b]
。
F(X)=(乙-一个)⋅(X-米一世n)米一个X-米一世n+一个
我们现在使用此公式将 的 X 和 Y 坐标data
转换为其他范围:
min_x_new , max_x_new = 33 , 88
min_y_new , max_y_new = 12 , 20
数据, 标签 = ds 。make_moons ( n_samples = 100 ,
shuffle = True ,
噪音= 0.05 ,
random_state = None )
min_x , min_y = np 。数组。min ( data [:, 0 ]), np . 数组。min ( data [:, 1 ])
max_x , max_y = np 。数组。最大(数据[:,0 ]), np 。数组。最大值(数据[:, 1 ])
#data -= np.array([min_x, 0])
#data *= np.array([(max_x_new - min_x_new) / (max_x - min_x), 1])
#data += np.array([min_x_new, 0 ])
#data -= np.array([0, min_y])
#data *= np.array([1, (max_y_new - min_y_new) / (max_y - min_y)])
#data += np.array([0, min_y_new ])
数据 -= np 。数组([ min_x , min_y ])
数据 *= np 。数组([( max_x_new - min_x_new ) / ( max_x - min_x ), ( max_y_new - min_y_new ) / ( max_y - min_y )])
数据 += np 。数组([ min_x_new , min_y_new ])
#np.ndarray.min(data[:,0]), np.ndarray.max(data[:,0])
数据[: 6 ]
输出:
数组([[88., 15.90901932],
[60.360365, 18.79100903],
[49.63581889, 17.39619093],
[87.04094705, 17.48341055],
[54.70782513, 19.39948339],
[45.93282226, 19.58274387]])
DEF scale_data (数据, new_limits , 就地=假 ):
如果 不 就地:
数据 = 数据。copy ()
min_x , min_y = np . 数组。min ( data [:, 0 ]), np . 数组。min ( data [:, 1 ])
max_x , max_y = np 。数组。最大(数据[:,0 ]), np 。数组。max ( data [:, 1 ])
min_x_new , max_x_new = new_limits [ 0 ]
min_y_new , max_y_new = new_limits [ 1 ]
data -= np 。数组([ min_x , min_y ])
数据 *= np 。数组([( max_x_new - min_x_new ) / ( max_x - min_x ), ( max_y_new - min_y_new ) / ( max_y - min_y )])
数据 += np 。阵列([ min_x_new , min_y_new ])
如果 就地:
返回 无
其他:
返回 数据
数据, 标签 = ds 。make_moons ( n_samples = 100 ,
shuffle = True ,
噪音= 0.05 ,
random_state = None )
scale_data ( data , [( 1 , 4 ), ( 3 , 8 )], inplace = True )
data [: 10 ]
输出:
数组([[4. , 6.15406088],
[3.39866042, 3.67397656],
[2.48929457, 3.53253909],
[1.91445947, 8. ],
[2.91169101, 5.66862954],
[1.945163, 7.73094901],
[1.77272979, 7.98946409],
[1.74802092, 7.53443605],
[2.13143418, 5.0679138],
[2.96740593, 4.69559235]])
图, ax = plt 。子图()
斧头。分散(数据[标签== 0 , 0 ], 数据[标签== 0 , 1 ],
c = ‘orange’ , s = 40 , label = ‘oranges’ )
ax . 散射(数据[标签== 1 , 0 ], 数据[标签== 1 , 1 ],
c ^ = ‘蓝’, s = 40 , 标签= ‘blues’ )
斧头。设置(xlabel = ‘X’ ,
ylabel = ‘Y’ ,
title = ‘moons’ )
斧头。图例( loc = ‘右上角’ );
将 sklearn.datasets 导入****为 ds
数据, 标签 = ds 。make_circles ( n_samples = 100 ,
shuffle = True ,
噪声= 0.05 ,
random_state = None )
图, ax = plt 。子图()
斧头。分散(数据[标签== 0 , 0 ], 数据[标签== 0 , 1 ],
c = ‘orange’ , s = 40 , label = ‘oranges’ )
ax . 散射(数据[标签== 1 , 0 ], 数据[标签== 1 , 1 ],
c ^ = ‘蓝’, s = 40 , 标签= ‘blues’ )
斧头。设置(xlabel = ‘X’ ,
ylabel = ‘Y’ ,
title = ‘circles’ )
斧头。图例(loc = ‘右上角’ )
输出:
<matplotlib.legend.Legend 在 0x7f1c3d3caa30>
打印(__doc__ )
导入 matplotlib.pyplot 作为 plt
从 sklearn.datasets 导入 make_classification
从 sklearn.datasets 导入 make_blobs
从 sklearn.datasets 导入 make_gaussian_quantiles
PLT 。图( figsize = ( 8 , 8 ))
plt . subplots_adjust (底部=. 05 , 顶部=. 9 , 左=. 05 , 右=. 95 )
PLT 。子图( 321 )
plt 。标题(“一个信息特征,每个类一个集群” , 字体大小= ‘small’ )
X1 , Y1 = make_classification (n_features = 2 , n_redundant = 0 , n_informative = 1 ,
n_clusters_per_class = 1 )
plt 。分散( X1 [:, 0 ], X1 [:, 1], 标记= ‘o’ , c = Y1 ,
s = 25 , edgecolor = ‘k’ )
PLT 。子图( 322 )
plt 。标题(“两个信息特征,每个类一个集群” , 字体大小= ‘small’ )
X1 , Y1 = make_classification (n_features = 2 , n_redundant = 0 , n_informative = 2 ,
n_clusters_per_class = 1 )
plt 。分散( X1 [:, 0 ], X1 [:, 1], 标记= ‘o’ , c = Y1 ,
s = 25 , edgecolor = ‘k’ )
PLT 。子图( 323 )
plt 。标题(“两个信息特征,每类两个集群” ,
字体大小= ‘small’ )
X2 , Y2 = make_classification (n_features = 2 ,
n_redundant = 0 ,
n_informative = 2 )
plt 。分散( X2 [:, 0 ], X2 [:, 1 ], 标记= ‘o’ , c = Y2 ,
s = 25 , edgecolor = ‘k’ )
PLT 。子图( 324 )
plt 。标题(“多类,两个信息特征,一个集群” ,
fontsize = ‘small’ )
X1 , Y1 = make_classification (n_features = 2 ,
n_redundant = 0 ,
n_informative = 2 ,
n_clusters_per_class = 1 ,
n_classes = 3 )
plt 。分散( X1 [:, 0], X1 [:, 1 ], 标记= ‘o’ , c = Y1 ,
s = 25 , edgecolor = ‘k’ )
PLT 。子图( 325 )
plt 。title ( “Gaussian 分为三个分位数” , fontsize = ‘small’ )
X1 , Y1 = make_gaussian_quantiles ( n_features = 2 , n_classes = 3 )
plt . 分散( X1 [:, 0 ], X1 [:, 1 ], 标记= ‘o’ , c = Y1 ,
s =25 , 边缘颜色= ‘k’ )
PLT 。显示()
输出:
为IPython交互环境自动创建模块
自我介绍一下,小编13年上海交大毕业,曾经在小公司待过,也去过华为、OPPO等大厂,18年进入阿里一直到现在。
深知大多数Python工程师,想要提升技能,往往是自己摸索成长或者是报班学习,但对于培训机构动则几千的学费,着实压力不小。自己不成体系的自学效果低效又漫长,而且极易碰到天花板技术停滞不前!
因此收集整理了一份《2024年Python开发全套学习资料》,初衷也很简单,就是希望能够帮助到想自学提升又不知道该从何学起的朋友,同时减轻大家的负担。
既有适合小白学习的零基础资料,也有适合3年以上经验的小伙伴深入学习提升的进阶课程,基本涵盖了95%以上Python开发知识点,真正体系化!
由于文件比较大,这里只是将部分目录大纲截图出来,每个节点里面都包含大厂面经、学习笔记、源码讲义、实战项目、讲解视频,并且后续会持续更新
如果你觉得这些内容对你有帮助,可以添加V获取:vip1024c (备注Python)
一、Python所有方向的学习路线
Python所有方向的技术点做的整理,形成各个领域的知识点汇总,它的用处就在于,你可以按照下面的知识点去找对应的学习资源,保证自己学得较为全面。
二、Python必备开发工具
工具都帮大家整理好了,安装就可直接上手!
三、最新Python学习笔记
当我学到一定基础,有自己的理解能力的时候,会去阅读一些前辈整理的书籍或者手写的笔记资料,这些笔记详细记载了他们对一些技术点的理解,这些理解是比较独到,可以学到不一样的思路。
四、Python视频合集
观看全面零基础学习视频,看视频学习是最快捷也是最有效果的方式,跟着视频中老师的思路,从基础到深入,还是很容易入门的。
五、实战案例
纸上得来终觉浅,要学会跟着视频一起敲,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。
六、面试宝典
简历模板
一个人可以走的很快,但一群人才能走的更远。不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎扫码加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!
9f494742db8bcc3fa312200539.png)
四、Python视频合集
观看全面零基础学习视频,看视频学习是最快捷也是最有效果的方式,跟着视频中老师的思路,从基础到深入,还是很容易入门的。
五、实战案例
纸上得来终觉浅,要学会跟着视频一起敲,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。
六、面试宝典
简历模板
一个人可以走的很快,但一群人才能走的更远。不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎扫码加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!
[外链图片转存中…(img-WNMIaJIW-1712560717595)]