基于负熵(fastICA)的盲源分离

本文介绍了基于负熵的盲源分离方法,通过负熵来度量信号的非高斯性,以实现信号的独立分离。文章详细阐述了编程实现的步骤,包括信号的中心化与预白化、迭代过程、正交化、权值归一化和收敛条件判断。示例中,分离的是4个信源和4个传感器的正定信号,共有2000个采样点。
摘要由CSDN通过智能技术生成

根据信息论可知,等方差分布中高斯分布的熵最大。而根据概率论的中心极限定理可知,若一随机变量由许多相互独立的随机变量组成,只要具有有限的均值与方差,则无论其为何种分布,随机变量较更接近高斯分布。反之,对一个混合信号来说,如果完成对信号的分离,则会使得分离后的结果之间的非高斯性变大,即信号之间可看成相互独立的。故引入负熵来度量,其公式定义为
这里写图片描述
式中这里写图片描述是与这里写图片描述具有相同方差的高斯变量。从式子可以看出,当且仅当信号这里写图片描述满足高斯分布时,其负熵才会为零。而这里写图片描述不满足高斯分布是,负熵都会大于零,特别的当负熵达到最大时可以知道此时信号这里写图片描述的熵为零,亦即可以得出此时信号之间的独立性最大。故在分离信号的时候用可用负熵来度量。详细的推导过程见李云霞的博士论文《盲信号分离算法及其应用》。
我们在看完其推导之后,往往会发现其实际编程的时候会有困难,基于此,我在这里详细讲解如何

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值