根据信息论可知,等方差分布中高斯分布的熵最大。而根据概率论的中心极限定理可知,若一随机变量由许多相互独立的随机变量组成,只要具有有限的均值与方差,则无论其为何种分布,随机变量较更接近高斯分布。反之,对一个混合信号来说,如果完成对信号的分离,则会使得分离后的结果之间的非高斯性变大,即信号之间可看成相互独立的。故引入负熵来度量,其公式定义为
式中是与具有相同方差的高斯变量。从式子可以看出,当且仅当信号满足高斯分布时,其负熵才会为零。而不满足高斯分布是,负熵都会大于零,特别的当负熵达到最大时可以知道此时信号的熵为零,亦即可以得出此时信号之间的独立性最大。故在分离信号的时候用可用负熵来度量。详细的推导过程见李云霞的博士论文《盲信号分离算法及其应用》。
我们在看完其推导之后,往往会发现其实际编程的时候会有困难,基于此,我在这里详细讲解如何
基于负熵(fastICA)的盲源分离
最新推荐文章于 2024-02-27 23:55:02 发布
本文介绍了基于负熵的盲源分离方法,通过负熵来度量信号的非高斯性,以实现信号的独立分离。文章详细阐述了编程实现的步骤,包括信号的中心化与预白化、迭代过程、正交化、权值归一化和收敛条件判断。示例中,分离的是4个信源和4个传感器的正定信号,共有2000个采样点。
摘要由CSDN通过智能技术生成