参考文献:独立分量分析FastICA和Informax算法比较研究
1988年Linker提出了Infomax(Information Maximization)原则,即信息传输极大原则。可描述为:网络的输入端和输出端的互信息达到最大时,等价于输出端各分量间的冗余信息得到去除。
算法的思路是:对每个观测向量 X(t)先通过线性变换求一个中间向量Y=WX(t) 。然后通过非线性变换 Zi=g(Yi)求得输出向量Z 。根据互信息的性质可知:分量到分量的非线性映射 g(.)对互信息不产生任何的影响, I(Z)的最小化也意味着I(Y) 的最小化。于是针对 Z(t)建立一个目标函数,这里选择 Z(t)的熵作为目标函数,因为熵是一个随机量无序性的度量,如果Z(t) 的各分量的统计独立性越高则相应 Z(t)的熵越大,所以只需求得使得目标函数达到最大的W 即求得了ICA的解。此思路是模仿单层前向神经网络,X 和 Z分别网络的输入与输出。
盲分离框图是
由概率论知识可知,当非线性函数g(y)是一个单调可逆的函数时候,输出信号的概率密度可以用输入信号的概率密度来表示,公式为(单信号的信号)
信息极大化(Informax)盲分离算法及matlab源码
最新推荐文章于 2024-09-14 09:43:29 发布
本文介绍了信息极大化(Informax)原则及其在独立分量分析中的应用。通过线性与非线性变换,Informax算法旨在最大化输出端各分量间的互信息,以实现信号的盲分离。文中提供了算法的数学推导,包括目标函数和随机梯度法的求解过程,并展示了MATLAB源码实现。
摘要由CSDN通过智能技术生成