
图机器学习
文章平均质量分 52
介绍图机器学习算法与前沿技术
一穷二白到年薪百万
程序员
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
【图神经网络】邻居采样算法
在大规模图上遇到节点爆炸问题,可以参考下面的文献。原创 2023-08-08 11:38:01 · 990 阅读 · 0 评论 -
【图神经网络-RGCN】关系图神经网络dgl版本实现
参考文献【1】是数学上的解读参考文献【2】是升级版本,有空来填坑。原创 2023-07-12 17:24:23 · 691 阅读 · 0 评论 -
【对比学习】Pytorch对比损失的实现及应用
对比损失比较好理解,在输入的多模态数据中使得相同对应样本的相似度越大越大,不对应样本的相似度越小越好。原创 2023-03-01 11:35:44 · 2144 阅读 · 0 评论 -
【图机器学习】GCN源码中的邻接矩阵的构建
在上述代码中比较难理解的就是构建对称的邻接矩阵那一句,因为在一般的图神经网络模型中,输入的图是无向图所以邻接矩阵是对称矩阵。特别是如果自己构建KNN图的话,对称矩阵这个地方一定要注意。上述代码的具体解释可以看参考文献,这里不多赘述。需要注意的是构建邻接矩阵是否只有这一种方法?其实不然,最简单的操作是矩阵A加上矩阵AT但是这种方法有一定局限性,如果矩阵是一个加权的并不是0,1矩阵,或者矩阵本身就存在对称的元素,直接相加就会存在问题。所以使用上述的代码会避免存在的问题。原创 2023-03-01 11:24:40 · 1588 阅读 · 0 评论 -
【图机器学习-空域卷积】GNN/GraphSAGE/PGC模型的变化
1]图卷积神经网络3-空域卷积:GNN/GraphSAGE/PGC的引入和介绍。原创 2023-02-14 16:02:02 · 307 阅读 · 0 评论 -
【图神经网络】基于图的生成模型
[1]生成模型VAE、GAN和基于流的模型详细对比[2]基于流的生成模型-Flow based generative models[3][读论文 ICLR 2020] GraphAF: 基于流的分子图生成自回归模型[4]论文导读 | 图生成模型综述原创 2022-11-14 20:00:46 · 965 阅读 · 0 评论 -
【图神经网络】图变分自编码器VGAE
[1]第三课.图变分自编码器&图对抗生成网络[2]【GNN】VGAE:利用变分自编码器完成图重构[3]【GNN五大类 VGAE】(变分图自编码器):Variational Graph Auto-Encoders[4]图自编码器的起源和应用原创 2022-10-26 17:17:01 · 427 阅读 · 0 评论 -
【图神经网络-谱图卷积】图神经网络模型的变化SCNN/ChebNet/GCN
在之前的基础介绍中我们已经从谱图理论过渡到图傅里叶变换再到图卷积,那么在这一小节中我们根据图卷积的定义介绍几种基础的图卷积的模型。此文内容为自学内容的笔记,其中多有参考借鉴他人博客的地方,一并在参考文献中给出链接。【图机器学习】图神经网络入门(一)谱图理论【图机器学习】图神经网络入门(二)图上的傅里叶变换【图机器学习】图神经网络入门(三)从图傅里叶变换到图卷积【图机器学习入门】拉普拉斯算子与拉普拉斯矩阵的关系[1]如何理解 Graph Convolutional Network(GCN)?原创 2022-09-27 11:34:06 · 1207 阅读 · 0 评论 -
【图机器学习】图神经网络入门(三)从图傅里叶变换到图卷积
在之前的文章中(图上的傅里叶变换),已经顺利的从传统的傅里叶变换过渡到了图上的傅里叶变换,这样使得离散的图数据能够进行卷积操作。本节主要阐述如何如何从图的傅里叶变换到图卷积。本文为自学的记录,其中多有借鉴他人的地方,一并在参考文献中给出链接。[1]【王木头学科学|深度学习】1. 什么是卷积?卷积的3个意义。卷积、图像卷积操作、卷积神经网络[2]【图机器学习】图神经网络入门(二)图上的傅里叶变换[3]图卷积神经网络1-谱域图卷积:拉普拉斯变换到谱域图卷积[4]GCN中的等式证明。原创 2022-09-06 15:47:53 · 806 阅读 · 0 评论 -
【图神经网络】图的小波变换
[1]基于Spectral Graph Wavelet Transform的图卷积神经网络(上篇)原创 2022-09-05 11:38:47 · 657 阅读 · 0 评论 -
【图机器学习】图卷积与图滤波器
图滤波器为对图中的频率分量进行增强或衰减,图滤波算子核心为其频率响应矩阵,为滤波器带来不同的滤波效果。故图滤波器根据滤波效果可分为低通,高通和带通。H。原创 2022-09-04 23:14:03 · 570 阅读 · 0 评论 -
【图机器学习】图神经网络入门(二)图上的傅里叶变换
内容为自己的学习总结,其中多有借鉴他人的地方,最后一并给出链接。在之前的文章中已经简单介绍了谱图理论【图机器学习】图神经网络入门(一)谱图理论,在本小节主要介绍如何从传统的傅里叶变换到图上的傅里叶变换。其中个人理解有错的地方希望,大家多多指正。这里在此重申一下为什么学习图傅里叶变换,对于图来说,直接进行卷积是困难的,因为图不具备图像那样规则的网格结构,因此考虑应用图傅里叶变换将网络的空域信息映射到频域来应用卷积定理完成卷积操作。原创 2022-09-02 23:04:55 · 1807 阅读 · 2 评论 -
【图神经网络】图神经网络处理边信息
[1]【每周一读】在图神经网络中挖掘利用边的特征信息[2]图上的边信息怎么办:GNNs与edge feature原创 2022-08-12 15:19:00 · 843 阅读 · 0 评论 -
【图机器学习】图神经网络入门(一)谱图理论
作为图神经网络的学习基础,谱图理论在图神经网络的基础学习中显得尤为重要,所以准备整理下学习路径。本节的学习基础是之前【理解矩阵系列】文章和【理解特征值和特征向量】文章。 这里再谈一下为什么要学习谱图理论。尽管我们经常看到的图神经网络的表达式为 D1/2AD1/2HWD^{1/2}AD^{1/2}HWD1/2AD1/2HW,这是一种空域的形式,但是在查阅图神经网络相关资料或者阅读KpifKpifKpif图神经网络原论文的时候总是绕不开谱域图神经网络这个槛。这是因为图卷积神经网络的核心为卷积操作,而在无原创 2022-06-06 12:01:20 · 2227 阅读 · 0 评论 -
【图机器学习】启发式链路预测方法
[1]Neo4j图分析—链接预测算法(Link Prediction Algorithms)[2] 链路预测之基于局部信息的10个相似性指标原创 2022-06-04 18:57:31 · 596 阅读 · 0 评论 -
【dgl基础】构建图
参考文献[1]【DGL学习3】自己构造和使用简单图原创 2022-05-16 10:01:26 · 606 阅读 · 0 评论 -
【图神经网络基础】理解GCN的对称归一化操作-图的拉普拉斯归一化
目录1 对称归一化的意义2 例子解释3 参考文献1 对称归一化的意义 对图卷积网络的公式,已经非常熟悉了,并且对公式表示的意思也能理解即:实现图中节点之间的消息传递或者称做特征传递。但是在dgl框架的学习过程中,对于单向二部图的图卷积操作的使用过程中,需要深入的理解图邻接矩阵的对称归一化操作也即图的拉普拉斯正则。H(l+1)=σ(D~−1/2A~D~−1/2HlWl)H^{(l+1)}=\sigma\left(\tilde{D}^{-1 / 2} \tilde{A} \tilde{D}^{-1 /原创 2022-05-03 11:49:42 · 11161 阅读 · 0 评论 -
【图神经网络的预训练】
参考文献[1]图神经网络的预训练[2]Make GNN Great Again: 图神经网络上的预训练和自监督学习原创 2022-04-11 17:46:37 · 641 阅读 · 0 评论 -
【Pytorch Geometric学习(一)】创建数据集
参考文献[1]使用Pytorch Geometric建立自己的数据集原创 2022-04-11 11:04:35 · 1445 阅读 · 0 评论 -
如何理解 Graph Convolutional Network(GCN)
[1]如何理解 Graph Convolutional Network(GCN)?原创 2021-03-02 21:59:44 · 197 阅读 · 0 评论 -
Weisfeiler-Lehman(WL)算法测试图同构
参考文献[1]Weisfeiler-Lehman算法测试图同构[2]图神经网络的表达能力与Weisfeiler-Lehman测试[3]什么是Weisfeiler-Lehman(WL)算法和WL Test?[4]Weisfeiler-Lehman(WL)算法[5]【GNN】WL-test:GNN 的性能上界[6]The Weisfeiler-Lehman Isomorphism Test...原创 2021-07-28 10:50:36 · 1874 阅读 · 0 评论 -
【图神经网络】图注意力机制GAT以及Pytorch实现
[1]【GNN】GAT:Attention 在 GNN 中的应用[2]图注意力网络(GAT) ICLR2018, Graph Attention Network论文详解[3]https://github.com/dmlc/dgl/tree/master/examples/pytorch/gat[4]https://github.com/PetarV-/GAT原创 2021-04-25 20:20:25 · 8576 阅读 · 2 评论 -
【图机器学习入门】拉普拉斯算子与拉普拉斯矩阵的关系
本文为自己学习的记录,内容多有参考其他博主的资料,相关资料一并在参考文献中给出。谱图理论目的是研究图的邻接矩阵,而其中最重要的概念就是拉普拉斯矩阵。拉普拉斯矩阵之所以在图神经网络中如此重要,是因为如果要把传统的傅里叶变换以及卷积迁移到Graph上来,核心工作其实就是把拉普拉斯算子的特征函数e−iwte^{-iwt}e−iwt,变为Graph对应的拉普拉斯矩阵的特征向量。通过拉普拉斯算子与拉普拉斯矩阵进行类比。原创 2021-03-02 20:47:46 · 3974 阅读 · 1 评论 -
【图深度学习】GCN(图卷积网络)学习从0到1
图神经网络是近几年乃至以后非常热门的一个研究方向,这不仅体现在图深度学习的理论算法研究,还体现在图神经网络的应用方面。每当各大顶会一放榜有关图神经网络算法研究的论文在数量方面肯定排名前几。我自己研究图神经网络也有一段时间了,一直不知道该如何去解读图神经网络,所以这个文章一直是空的。最近在这上面有了一些想法,所以打算出一个系列文章把这一块的知识弄清楚。系列文章主要分三大块第一块是:主要讲一下图神经网络的内核即:图神经网络是怎么来的以及相较于传统卷积神经网络GCN是如何解决的不规则图上的卷积问题。原创 2021-03-23 20:44:34 · 717 阅读 · 1 评论