【均引用自其他博客,这里只是将我认同的观点做一个整理】
传统的神经网络去噪:
含噪图像作为输入,清晰图像作为输出,在这基础上训练神经网络以拟合两者之间的映射,从而实现去噪功能:
策略(GAN+CNN):
1、提取含噪图像集中的噪声块,训练 GAN 网络以得到一个噪声生成器V
2、在干净图像数据集 X 中随机选取图像块 x ,加入 GAN 生成的噪声 v ,得到含噪图像 y
3、按照 {y,x} 训练 CNN ,使其学得从给定 y 去噪的 CNN 网络参数 θ 。
缺点:需要有干净样本。
ref.
[1] Image Blind Denoising With Generative Adversarial Network Based Noise Modeling
[2] https://www.jiqizhixin.com/articles/2019-01-22-27
新思路:Noise2noise
输入输出都是带有噪声的图片(噪声是人工加入的,0均值,高斯噪声),进行训练。
由于输入输出的噪声都是随机的,那么如果让CNN强行去学习二者之间的映射关系,CNN能学到什么呢?
当训练样本很少时,CNN会学习到两种噪声模式的转换关系。
当样本数量足够多的时候,由于噪声是不可预测的,站在最小化Loss的角度,CNN就可以学习到清晰的图像本身了。
(CNN是不可能学习到某种噪声转换规律从而使得Loss最小化的,因为噪声始终是随机的。)
ref.
[1] Noise2Noise: Learning Image Restoration without Clean Data
[2] https://www.jianshu.com/p/173f50311dc8