聚类算法之K邻近算法

(1)、基本K均值算法

 

1:选择K个点作为质心

2: REPEAT

3:将每个点指派到最近的质心,形成K个簇

4:重新计算每个簇的质心

5:UNTIL  质心不再发生变化

 

 

(2)、二分K均值算法

 

1:初始化簇表,使之包含由所有的点组成的簇

2: REPEAT

3:从簇表中取出一个簇

4:{对选定的簇进行多次二分“试验”}

5: FOR i = 1 TO 试验次数 DO

6:         使用基本K均值,二分选定的簇

7:  END FOR

8: 从二分试验中选择具有最小总SSE的两个数

9: 将这两个簇添加到簇表中

10: UNTIL  簇表中包含K个簇

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值