dify实现原理分析-rag-检索(Retrieval)服务的实现

概述

本文对dify的检索服务的检索过程的实现逻辑进行了分析。通过本文可以对检索服务的检索过程有一个比较清晰的理解,若是要关注实现细节,可以阅读对应部分的代码。

检索的分类

dify实现了三种类型的检索

  • 语义搜索
  • 全文搜索
  • 混合搜索

检索的类型定义如下:

class RetrievalMethod(Enum):
    SEMANTIC_SEARCH = "semantic_search"
    FULL_TEXT_SEARCH = "full_text_search"
    HYBRID_SEARCH = "hybrid_search"

在进行检索的过程中,会根据检索类型来执行不同的流程。

检索服务的总流程

检索服务的实际执行过程在RetrievalService.retrieve(…)函数中实现。该函数的主要实现逻辑如下:

  1. 若检索方法为关键词检索(retrieval_method == "keyword_search"),启动关键词检索线程,来根据查询语句来查询相关文档。结果保存到all_documents中。
  2. 若检索服务支持语义检索(is_support_semantic_search),则根据参数query查询嵌入向量,返回top_k个最相似的documents。结果保存到all_documents中。
  3. 若检索服务支持全文检索(is_support_fulltext_search),则根据参数query在对应向量数据库中进行全文检索。注意,有些向量数据库不支持全文检索。结果保存到all_documents中。
  4. 若检索方法是混合检索retrieval_method == RetrievalMethod.HYBRID_SEARCH.value,则启动数据后处理相关流程。结果保存到all_documents中。

关键词检索的实现

关键词检索功能是在函数:RetrievalService.keyword_search()中实现,该函数在 Flask应用程序的上下文中进行关键词搜索操作。该函数的实现逻辑如下:

  1. 在给定的应用程序上下文中,从数据库中获取指定ID的数据集。
  2. 使用该数据集创建一个关键词检索对象(Keyword),并执行关键词搜索。检索的时候,会根据关键词的存储类来构建检索的类。默认是:JIEBA。然后再调用Keywor
<think>好的,我现在需要回答用户关于DeepSeek、DifyRAG的比较与区别的问题。首先,我需要分别理解这三个概念各自的定义和功能,然后找出它们之间的联系和不同之处。 首先,RAGRetrieval-Augmented Generation)是一个结合了检索和生成的框架,用于增强生成模型的效果。根据用户提供的引用[1],RAG通过检索外部知识库来辅助生成更准确的回答,适用于需要实时数据或专业知识的场景。这可能涉及到传统RAG和GraphRAG等不同变体,但核心是检索与生成的结合。 接下来是Dify,根据引用[2]、[3]、[4]、[5],Dify是一个开源的AI应用开发平台,允许用户构建和部署基于大语言模型的应用,比如智能客服或知识库系统。它支持多种模型集成,包括本地部署的模型如Ollama,并且提供可视化界面,方便管理知识库和数据处理。Dify可能使用RAG作为其技术之一,来增强生成的效果,但Dify本身更偏向于一个开发工具或平台,帮助用户整合各种技术。 然后是DeepSeek,根据引用[3],DeepSeek是一个大语言模型,可能类似于GPT,需要本地部署。用户提到DeepSeek在本地部署后,可以与Dify结合使用来构建个人知识库。这说明DeepSeek是模型层面的,而Dify是应用层面的,两者可以配合使用。 现在需要比较这三者的区别。RAG是技术框架,用于提升生成模型的效果;Dify是应用开发平台,可能集成RAG等技术;DeepSeek是具体的语言模型,属于底层技术。因此,它们的层次不同:DeepSeek属于模型层,RAG是架构层的方法,Dify是应用层的工具。 需要确认引用中的信息是否准确。引用[1]提到RAG的框架,包括GraphRAG,这支持了RAG作为技术框架的描述。引用[2]和[3]说明Dify的功能和部署方式,引用[3]提到DeepSeek的本地部署,结合Dify使用。因此,可以总结出三者的角色和相互关系。 可能用户想知道如何选择这些技术,或者它们在不同应用中的位置。需要明确各自的定位:RAG用于增强生成,Dify用于构建应用,DeepSeek作为模型提供生成能力。例如,使用Dify平台可以集成DeepSeek模型,并应用RAG技术来提升回答质量。 最后,生成相关问题时要围绕它们的区别、应用场景、如何结合使用等方面提问,帮助用户进一步理解。</think>### DeepSeek、DifyRAG的比较与区别 #### 1. **核心定位** - **DeepSeek**:开源大语言模型(LLM),提供文本生成和理解能力,需本地部署或通过API调用,属于底层模型层技术。例如,支持知识问答、文本生成等任务[^3]。 - **Dify**:开源的AI应用开发平台,专注于构建基于大语言模型的应用(如知识库、智能客服)。提供可视化界面、知识库管理、多模型集成(如DeepSeek、Ollama)等功能,属于应用开发工具层[^2][^5]。 - **RAG**(检索增强生成):一种技术框架,通过结合检索外部知识库和生成模型,提升回答的准确性和专业性,属于架构层技术[^1]。 #### 2. **功能差异** - **DeepSeek** 侧重于模型本身的能力,如文本生成、逻辑推理,需依赖开发工具(如Dify)或自行编码才能落地为实际应用。 - **Dify** 提供全链路开发支持: - 集成多种模型(如DeepSeek、GPT) - 支持RAG技术实现知识库问答 - 提供数据预处理、提示词工程、部署监控等功能[^5]。 - **RAG** 需结合具体模型(如DeepSeek)和工具(如Dify)使用,核心是优化生成效果。例如,在Dify中通过上传文档构建知识库,利用RAG框架实现精准回答[^3]。 #### 3. **协作关系** - **典型应用流程**: DeepSeek(模型) + Dify(平台) + RAG(技术框架) 示例:在Dify平台部署DeepSeek模型,通过RAG调用企业知识库,构建智能客服系统。 #### 4. **适用场景** - **DeepSeek**:需自主训练或调优模型的场景,如定制化文本生成。 - **Dify**:快速开发AI应用(如知识库、对话机器人),无需深入编码。 - **RAG**:需结合实时数据或专业知识的生成任务(如法律咨询、医疗问答)[^1]。 --- ###
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值