dify实现分析-rag-文档内容提取

dify实现分析-rag-文档内容提取

概述

在文章《dify实现原理分析-上传文件创建知识库总体流程》中已经介绍了,文件上传后索引构建的总体流程,本文介绍其中的“Extract: 提取文档内容:这里会按段落或整页来获取文档内容”步骤的实现。

这一步的主要功能是:从不同格式的文档中提取文本内容,这里的格式包括:pdf、word、csv、html、txt、markdown、ppt等等。不同格式的文本,需要使用的文本获取的类和对象不同。

文档的内容获取是在IndexingRunner._extract函数中实现。该函数的声明如下:

    def _extract(
        self, index_processor: BaseIndexProcessor, dataset_document: DatasetDocument, process_rule: dict
    ) -> list[Document]:

IndexingRunner._extract函数

上传文件
Notion导入
### 使用Dify构建知识库及RAG系统的流程 #### 1. 准备工作环境 为了顺利搭建基于Dify平台的知识库及其对应的RAG系统,需先完成开发环境配置。确保安装了必要的依赖项和服务组件,特别是支持向量相似度搜索的Milvus数据库[^1]。 ```bash pip install pymilvus dify-client ``` #### 2. 数据预处理与导入 收集并整理目标领域内的文档资料或其他形式的数据集,将其转换成适合存储于Milvus中的结构化表示——通常是高维特征向量。此过程可能涉及自然语言处理技术来提取文本特征或将图像转化为数值型描述符。 #### 3. 配置 Milvus 向量索引 创建一个新的集合(collection),定义好字段属性(如ID、嵌入维度等),接着批量插入之前准备好的数据记录到该集合内。合理设置参数可以优化查询效率和资源利用率。 ```python from milvus import Milvus, DataType client = Milvus() collection_name = "knowledge_base" fields = [ {"name": "id", "type": DataType.INT64}, {"name": "embedding", "type": DataType.FLOAT_VECTOR, "params": {"dim": 768}} ] if not client.has_collection(collection_name)[0]: client.create_collection( collection_name=collection_name, fields=fields ) ``` #### 4. 实现检索模块 利用已建立起来的向量索引服务,在接收到用户提问时快速定位最接近的问题表述或相关内容片段。这里可以通过计算输入文本与其他已有条目之间的余弦距离实现高效匹配操作。 ```python def search_similar_questions(query_embedding): status, results = client.search( collection_name="knowledge_base", query_records=[query_embedding], top_k=5, params={"nprobe": 10} ) return [result.id for result in results[0]] ``` #### 5. 整合生成模型 最后一步就是将上述获取到的结果传递给预先训练过的大型语言模型,让其根据上下文线索自动生成合理的回复内容。这样不仅能够提供精准的答案摘要,还能灵活应对各种类型的询问需求[^2]。 ```python import dify_client as dc dify_api_key = 'your_dify_api_key' generator = dc.TextGenerator(api_key=dify_api_key) context_ids = search_similar_questions(user_query_embedding) response_text = generator.generate(context_ids=context_ids, prompt=user_input) print(response_text) ```
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值