1.计算机组成与体系结构

  • 运算器
    • 算数逻辑单元ALU:数据的算数运算和逻辑运算
    • 累加寄存器AC:通用寄存器,为ALU提供一个工作区,用来暂存数据
    • 数据缓冲寄存器DR:写内存时,暂存指令或数据
    • 状态条件寄存器PSW:存状态标志与控制标志
  • 控制器:
    • 程序计数器PC:存储下一条要执行指令的地址
    • 指令寄存器IR:存储即将执行的指令
    • 地址寄存器AR
    • 指令译码器ID:对指令中的操作码字段进行分析解释
    • 时序部件:提供时序控制信号
      在这里插入图片描述
  • 计算机体系结构分类:
    • 单指令流单数据流SISD:单处理器系统
    • 单指令流多数据流

在这里插入图片描述

  • 寻址方式
    • 立即寻址方式
    • 直接寻址方式
    • 间接寻址方式
    • 寄存器寻址方式
    • 寄存器间接寻址方式

在这里插入图片描述

在这里插入图片描述

  • CISI 与 RISI 比较,分哪些维度
    指令数量,指令使用频率,寻址方式,寄存器,流水线支持,高级语言支持。
    CISI: 复杂,指令数量多,频率差别大,多寻址
    RISI:精简,指令数量少,操作寄存器,单周期,少寻址,多通用寄存器,流水线。
    在这里插入图片描述

  • 流水线-概念

在这里插入图片描述

  • 流水线-流水线计算
    • 流水线周期:执行时间最长的一段
    • 流水线计算公式:1条指令执行时间+(指令条数-1)*流水线周期
      - (t1+t2+..tk)+(n-1)*
      在这里插入图片描述
      在这里插入图片描述

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

  • 直接相联映像缺点:冲突率高
    在这里插入图片描述
  • 全相联映像:冲突率低,但查询复杂
    在这里插入图片描述
  • 组相联映像:对管理系统消耗很大
  • 主存-编址与计算
    在这里插入图片描述
    在这里插入图片描述
    在这里插入图片描述
  • N模混合系统的可靠性
    在这里插入图片描述
    在这里插入图片描述
    在这里插入图片描述
    可检查1的错误,不可纠错
    在这里插入图片描述
    在这里插入图片描述
    在这里插入图片描述
### 回答1: 以下是使用Python语言和risi数据集找分位数画直方图的完整代码: ```python import pandas as pd import matplotlib.pyplot as plt # 读取risi数据集 df = pd.read_csv('risi.csv') # 找到分位数 q1 = df['price'].quantile(0.25) q2 = df['price'].quantile(0.5) q3 = df['price'].quantile(0.75) # 画出直方图 plt.hist(df['price'], bins=30, range=(0, 2000), alpha=0.5) plt.axvline(x=q1, color='r', linestyle='--') plt.axvline(x=q2, color='g', linestyle='--') plt.axvline(x=q3, color='b', linestyle='--') plt.legend(['Q1: ${:.2f}'.format(q1), 'Q2: ${:.2f}'.format(q2), 'Q3: ${:.2f}'.format(q3)]) plt.xlabel('Price') plt.ylabel('Frequency') plt.title('Histogram of RISI Prices') plt.show() ``` 代码解释: 1. 首先,我们使用`pandas`库中的`read_csv()`函数读取risi数据集,并将其存储在名为`df`的数据框中。 2. 接下来,我们使用`quantile()`函数找到分位数,并将它们存储在变量`q1`、`q2`和`q3`中。 3. 然后,我们使用`matplotlib`库中的`hist()`函数画出直方图,并使用`alpha`参数设置透明度。 4. 我们使用`axvline()`函数添加垂直线来表示分位数,并使用`color`和`linestyle`参数设置线的颜色和样式。 5. 使用`legend()`函数添加一个图例,以便我们可以轻松地了解每个分位数的价值。 6. 最后,我们使用`xlabel()`、`ylabel()`和`title()`函数添加标签和标题,并使用`show()`函数显示直方图。 注意:在运行此代码之前,请确保您已经安装了必要的库`pandas`和`matplotlib`。 ### 回答2: 下面是使用Python语言编写的代码,使用risi数据集找到分位数并绘制直方图: ```python import matplotlib.pyplot as plt import pandas as pd # 读取risi数据集 df = pd.read_csv('risi.csv') # 计算分位数 q1 = df['value'].quantile(0.25) median = df['value'].quantile(0.5) q3 = df['value'].quantile(0.75) # 绘制直方图 plt.hist(df['value'], bins=10, color='skyblue', alpha=0.7, edgecolor='black') # 添加分位数线 plt.axvline(x=q1, color='red', label='Q1') plt.axvline(x=median, color='green', linestyle='--', label='Median') plt.axvline(x=q3, color='blue', linestyle='-.', label='Q3') # 添加标题和标签 plt.title('Histogram of Risi Dataset') plt.xlabel('Value') plt.ylabel('Frequency') # 显示图例 plt.legend() # 显示直方图 plt.show() ``` 请确保你已经将risi数据集保存为"risi.csv"文件,并且安装了Matplotlib库和Pandas库(可以使用pip进行安装)。运行上面的代码后,将会生成一张直方图,其中包含risi数据集的分布情况,并标注了Q1、中位数和Q3的位置。 ### 回答3: 以下是使用Python语言处理risi数据集并绘制直方图的完整代码: ```python import pandas as pd import matplotlib.pyplot as plt # 读取risi数据集 data = pd.read_csv("risi.csv") # 计算分位数 q1 = data["score"].quantile(0.25) q2 = data["score"].quantile(0.5) q3 = data["score"].quantile(0.75) # 绘制直方图 plt.hist(data["score"], bins=10, color='steelblue', edgecolor='k') plt.axvline(q1, color='r', linestyle='dashed', linewidth=1, label=f"Q1={q1}") plt.axvline(q2, color='g', linestyle='dashed', linewidth=1, label=f"Q2={q2}") plt.axvline(q3, color='b', linestyle='dashed', linewidth=1, label=f"Q3={q3}") plt.xlabel('Score') plt.ylabel('Frequency') plt.title('Histogram of Scores') plt.legend() plt.show() ``` 以上代码首先导入了`pandas`和`matplotlib.pyplot`库,然后使用`pd.read_csv`函数读取risi数据集。接着,使用`quantile()`函数计算了数据集的分位数,分别保存在变量`q1`、`q2`和`q3`中。 最后,使用`plt.hist()`函数绘制直方图,并使用`plt.axvline()`函数在直方图上画出分位数的虚线。最后设置了x轴和y轴的标签、标题以及图例,并使用`plt.show()`函数显示直方图。 请注意,以上代码假设risi数据集的文件名为"risi.csv",且数据集中包含一个名为"score"的列,该列包含分数数据。请根据实际情况调整文件名和列名。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值