背包问题

class Problems_Backpack(object):
    def ZeroOnePack(self,N,V,Weight,value):
        '''
        0-1 背包问题(即每个物品只取一次或者不取)
        :Param N 物品的个数 如 N=5
        :Param V 背包的总容量,如 V=15
        :Param weight 每个物品的重量数组    weight = [5,4,7,2,6]
        :Param value 每个物品的机制数组表示,values = [12,3,10,3,6]
        :return 返回最大的总价值 
        '''
        # 初始化f[N+1][V+1]为0,f[i][j]表示的是前i件物品放入一个容量为j的背包可以获得的最大价值
        f = [[0  for col in range(V+1)] for row in range(N+1)]
        # for _ in f:
        #     print(_)
        for i in range(1,N+1):
            for j in range(1,V+1):
                if j < Weight[i-1]:        # 当总容量j小于商品i的重量时,直接不考虑商品
                    f[i][j] = f[i-1][j]
                else:
                    # 由于weight,Value数组的下标是从0开始,第i个商品的重量为Weight[i-1],价值为Value[i-1]
                    f[i][j] = max(f[i-1][j],f[i-1][j-Weight[i-1]]+value[i-1])    # 状态方程
        max_values = f[N][V]
        for _ in f:
            print(_)
        return max_values

    def CompletePack(self,N,V,weight,value):
        ''' 
           完全背包问题(每个物品可以无限次取)
        '''
        # 初始化f[N+1][V+1]矩阵为0
        f = [[0 for col in range(V+1)] for row in range(N+1)]
        for i in range(1,N+1):
            for j in range(1,V+1):
                # 注意由于weight,value数组下标是0开始,所以第i件商品的重量和价值分别是weight[i-1],values[i-1]
                # j/weight[i-1]表示容量为j时,第i件商品可以取多少次
                f[i][j] = f[i-1][j]  # 初始取k=0时为最大,下面的循环是把取了k个物品i能获得的最大价值f[i][j]
                for k in range(j//weight[i-1]+1):
                    if f[i][j] < f[i-1][j-k*weight[i-1]]+k*value[i-1]:
                        f[i][j] = f[i-1][j-k*weight[i-1]+k*weight[i-1]]+k*value[i-1]       # 状态方程          
        max_value = f[N][V]
        for i in f:
            print(i)
        return max_value

    def MultiplePack(self,N,V,weight,value,num):
        """
            多重背包问题(每个物品都有次数限制)
            :param num: 每个物品的个数限制,如num=[2,4,1,5,3]
        """
        f = [[0 for col in range(V + 1)] for row in range(N + 1)]
        for i in range(1,N+1):
            for j in range(1,V+1):
                # 对物品i最多能取得次数是j//wight[i-1]与num[i-1]中较小的
                min_num = min(j//weight[i-1],num[i-1])
                f[i][j] = f[i-1][j]  # 初始取k=0为最大,下面的循环是把取了k个物品i能获取的最大价值赋给f[i][j]
                for k in range(min_num+1):
                    if f[i][j] < f[i-1][j-k*weight[i-1]]+k*value[i-1]:
                        f[i][j] = f[i-1][j-k*weight[i-1]]+k*value[i-1]
        max_value = f[N][V]
        for i in f:
            print(i)
        return max_value            

weight = [5,4,7,2,6]
values = [12,3,10,3,6]
sol = Problems_Backpack()
num = [2,4,1,5,3]
print('0-1背包问题:',sol.ZeroOnePack(5,15,weight,values))
print('完全背包问题:',sol.CompletePack(5,15,weight,values))
print('多重背包问题:',sol.MultiplePack(5,15,weight,values,num))

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值