pytorch中self.xxx = nn.Linear和drop_out layer的作用

本文介绍了PyTorch中的线性变换层nn.Linear和Dropout层的作用。nn.Linear用于对输入数据进行线性变换,Dropout层则通过随机设置部分元素为0来增加模型的泛化能力。nn.Dropout、nn.Dropout2d和nn.Dropout3d分别对应不同维度的Dropout操作,用于提高特征图之间的独立性。
摘要由CSDN通过智能技术生成
class torch.nn.Linear(in_features, out_features, bias=True)

作用:对输入数据做线性变换:y=Ax+b

参数:

in_features - 每个输入样本的大小
out_features - 每个输出样本的大小
bias - 若设置为False,这层不会学习偏置。默认值:True

形状:
输入: (N,in_features)
输出: (N,out_features)

变量:
weight -形状为(out_features x in_features)的模块中可学习的权值
bias -形状为(out_features)的模块中可学习的偏置

例子:

>>> m = nn.Linear(20, 30)
>>> input = autograd.Variable(torch.randn(128, 20))
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值