MIT 18.06 线性代数公开课笔记 Lecture08 Ax=b, 可解性及解的结构

还是以上节课的 A = [ 1 2 2 2 2 4 6 8 3 6 8 10 ] A=\begin{bmatrix} 1&2&2&2\\2&4&6&8\\3&6&8&10 \end{bmatrix} A=1232462682810 为例, 解方程组:
A x = [ 1 2 2 2 2 4 6 8 3 6 8 10 ] [ x 1 x 2 x 3 x 4 ] = [ b 1 b 2 b 3 ] A\mathbf{x}=\begin{bmatrix} 1&2&2&2\\2&4&6&8\\3&6&8&10 \end{bmatrix}\begin{bmatrix} x_1\\x_2\\x_3\\x_4 \end{bmatrix}=\begin{bmatrix} b_1\\b_2\\b_3 \end{bmatrix} Ax=1232462682810x1x2x3x4=b1b2b3
我们把整个方程组写成增广矩阵的形式并进行消元:
[ 1 2 2 2 b 1 2 4 6 8 b 2 3 6 8 10 b 3 ] ⟶ [ 1 2 2 2 b 1 0 0 2 4 b 2 − 2 b 1 0 0 2 4 b 3 − 3 b 1 ] ⟶ [ 1 2 2 2 b 1 0 0 2 4 b 2 − 2 b 1 0 0 0 0 b 3 − b 2 − b 1 ] \left[\begin{array}{cccc:c} 1&2&2&2&b_1\\2&4&6&8&b_2\\3&6&8&10&b_3 \end{array}\right]\longrightarrow\left[\begin{array}{cccc:c} 1&2&2&2&b_1\\0&0&2&4&b_2-2b_1\\0&0&2&4&b_3-3b_1 \end{array}\right]\\[2ex]\longrightarrow\left[\begin{array}{cccc:c} 1&2&2&2&b_1\\0&0&2&4&b_2-2b_1\\0&0&0&0&b_3-b_2-b_1 \end{array}\right] 1232462682810b1b2b3100200222244b1b22b1b33b1100200220240b1b22b1b3b2b1
我们得到 0 = b 3 − b 2 − b 1 0=b_3-b_2-b_1 0=b3b2b1 .

方程的可解性

b \mathbf{b} b 要满足什么条件才能使得方程 A x = b A\mathbf{x}=\mathbf{b} Ax=b 总是有解? 回想一下前几节课, 当且仅当 b \mathbf{b} b 属于 C ( A ) C(A) C(A) , 也就是说 b \mathbf{b} b 必须是 A A A 列向量的线性组合, 方程有解.

另一种等价的描述方式: 如果 A A A 各行的线性组合得到零行, 那么 b \mathbf{b} b 中元素的同样组合必须也是0. 这样方程才会有解.

方程求解的算法

A x = b A\mathbf{x}=\mathbf{b} Ax=b 的所有解.

  1. 首先验证 0 = 0 0=0 0=0 , 即方程有解.
  2. 第一步只求一个特定的解 x p \mathbf{x_p} xp , 即特解: 将所有自由变量置零, 然后解出 A x = b A\mathbf{x}=\mathbf{b} Ax=b 中的主变量.
  3. 加上零空间中的任意解 x n \mathbf{x_n} xn . 由于 A x p = b A\mathbf{x_p}=\mathbf{b} Axp=b , A x n = 0 A\mathbf{x_n}=\mathbf{0} Axn=0 , 所以 A x p + x n = b A\mathbf{x_p+x_n}=\mathbf{b} Axp+xn=b .

于是对于上面的 A x = b A\mathbf{x}=\mathbf{b} Ax=b , b = [ 1 5 6 ] \mathbf{b}=\begin{bmatrix} 1\\5\\6 \end{bmatrix} b=156 , 全部解为:
x c o m p l e t e = [ − 2 0 3 2 0 ] + c 1 [ − 2 1 0 0 ] + c 2 [ 2 0 − 2 1 ] \mathbf{x}_{complete}=\begin{bmatrix} -2\\0\\\frac32\\0 \end{bmatrix}+c_1\begin{bmatrix} -2\\1\\0\\0 \end{bmatrix}+c_2\begin{bmatrix} 2\\0\\-2\\1 \end{bmatrix} xcomplete=20230+c12100+c22021
这是一个 R 4 R^4 R4 中的二维平面, 但是不经过原点, 所以不是一个子空间.

m × n m\times n m×n 矩阵 A A A 的秩 r r r

矩阵有 m 行和 r 个主元, 一定有 r ≤ m r\le m rm .

同时矩阵有 n 列, 于是也一定有 r ≤ n r\le n rn , 因为主元个数不可能超过未知数个数.

列满秩, r = n &lt; m r=n&lt;m r=n<m

此时所有列都含主元, 没有自由变量, 于是零空间只有零向量, 此时 R = [ I 0 ] R=\begin{bmatrix} I\\0 \end{bmatrix} R=[I0] . A x = b A\mathbf{x}=\mathbf{b} Ax=b 将只有唯一解, 也就是特解 x p \mathbf{x_p} xp , 或者无解. 换句话说此时只有0或1个解.

行满秩, r = m &gt; n r=m&gt;n r=m>n

每一行都有主元, 不会出现零行, 对任何 b \mathbf{b} b 都一定有解. 自由变量有 n − r n-r nr 个, 此时 R = [ I F ] R=\begin{bmatrix} I&amp;F \end{bmatrix} R=[IF] , 有无数解.

最完美的矩阵 r = m = n r=m=n r=m=n

对于满秩方阵, 将得到一个可逆矩阵. 此时的 R = I R=I R=I , 其零空间只包含零向量. 此时对任何 b \mathbf{b} b 都一定有唯一解.

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值