翻译: 人工智能如何让世界变得更美好五

3. Economic development and poverty 经济发展与贫困

The previous two sections are about developing new technologies that cure disease and improve the quality of human life. However an obvious question, from a humanitarian perspective, is: “will everyone have access to these technologies?”

前两节是关于开发治疗疾病和改善人类生活质量的新技术。然而,从人道主义角度来看,一个显而易见的问题是:“每个人都能使用这些技术吗?”

It is one thing to develop a cure for a disease, it is another thing to eradicate the disease from the world. More broadly, many existing health interventions have not yet been applied everywhere in the world, and for that matter the same is true of (non-health) technological improvements in general. Another way to say this is that living standards in many parts of the world are still desperately poor: GDP per capita is ~$2,000 in Sub-Saharan Africa as compared to ~$75,000 in the United States. If AI further increases economic growth and quality of life in the developed world, while doing little to help the developing world, we should view that as a terrible moral failure and a blemish on the genuine humanitarian victories in the previous two sections. Ideally, powerful AI should help the developing world catch up to the developed world, even as it revolutionizes the latter.
开发一种疾病的治疗方法是一回事,根除这种疾病又是另一回事。 这 更广泛地说,许多现有的卫生干预措施尚未在世界各地应用。 世界,就此而言,同样的情况也适用于一般(非医疗)技术改进。 换句话说,世界许多地方的生活水平仍然极低 贫穷的: 人均国内生产总值是 撒哈拉以南非洲地区约 2,000 美元,而美国约 75,000 美元。如果人工智能进一步增加 发达国家的经济增长和生活质量,而对帮助发展中国家却无能为力。 发展 我们应该将其视为一种严重的道德失败,是真正的人道主义的污点。 前两部分的胜利。理想情况下,强大的人工智能应该帮助发展中国家 赶上发达国家,即使它彻底改变了后者。

I am not as confident that AI can address inequality and economic growth as I am that it can invent fundamental technologies, because technology has such obvious high returns to intelligence (including the ability to route around complexities and lack of data) whereas the economy involves a lot of constraints from humans, as well as a large dose of intrinsic complexity. I am somewhat skeptical that an AI could solve the famous “socialist calculation problem”23 and I don’t think governments will (or should) turn over their economic policy to such an entity, even if it could do so. There are also problems like how to convince people to take treatments that are effective but that they may be suspicious of.
我对人工智能能够解决不平等和经济增长问题并不像对它能够发明基础技术那样有信心,因为技术对智能的回报显然很高(包括能够绕过复杂性和缺乏数据),而经济则受到人类的诸多限制,以及大量的内在复杂性。我有点怀疑人工智能能否解决著名的“ 社会主义计算问题 ” 23 ,即使它可以这样做,我也不认为政府会(或应该)将其经济政策移交给这样的实体。还有一些问题,比如如何说服人们接受有效但他们可能持怀疑态度的治疗方法。

The challenges facing the developing world are made even more complicated by pervasive corruption in both private and public sectors. Corruption creates a vicious cycle: it exacerbates poverty, and poverty in turn breeds more corruption. AI-driven plans for economic development need to reckon with corruption, weak institutions, and other very human challenges.
私营部门和公共部门普遍存在的腐败现象使发展中国家面临的挑战更加复杂。腐败形成恶性循环:它加剧贫困 ,而贫困反过来又滋生更多的腐败。人工智能驱动的经济发展计划需要考虑腐败、薄弱的机构和其他非常人性化的挑战。

Nevertheless, I do see significant reasons for optimism. Diseases have been eradicated and many countries have gone from poor to rich, and it is clear that the decisions involved in these tasks exhibit high returns to intelligence (despite human constraints and complexity). Therefore, AI can likely do them better than they are currently being done. There may also be targeted interventions that get around the human constraints and that AI could focus on. More importantly though, we have to try. Both AI companies and developed world policymakers will need to do their part to ensure that the developing world is not left out; the moral imperative is too great. So in this section, I’ll continue to make the optimistic case, but keep in mind everywhere that success is not guaranteed and depends on our collective efforts.
尽管如此,我确实看到了乐观的重要理由。疾病已经被根除,许多 国家 已经从贫穷变成了富有,很明显,这些任务中涉及的决策表现出了高回报(尽管存在人类的限制和复杂性)。因此,人工智能很可能比现在做得更好。也可能存在一些有针对性的干预措施,可以绕过人类的限制,而人工智能可以专注于这些干预措施。但更重要的是, 我们必须尝试。人工智能 公司 发达国家的政策制定者需要尽自己的努力确保发展中国家不会 被忽略了;道德责任太大了。因此,在本节中,我将继续保持乐观 但请始终牢记,成功并不能保证,它取决于我们的共同努力。

Below I make some guesses about how I think things may go in the developing world over the 5-10 years after powerful AI is developed:
下面,我对强大的人工智能诞生后的 5 至 10 年内发展中国家的情况做了一些猜测:

Distribution of health interventions. The area where I am perhaps most optimistic is distributing health interventions throughout the world. Diseases have actually been eradicated by top-down campaigns: smallpox was fully eliminated in the 1970’s, and polio and guinea worm are nearly eradicated with less than 100 cases per year. Mathematically sophisticated epidemiological modeling plays an active role in disease eradication campaigns, and it seems very likely that there is room for smarter-than-human AI systems to do a better job of it than humans are. The logistics of distribution can probably also be greatly optimized. One thing I learned as an early donor to GiveWell is that some health charities are way more effective than others; the hope is that AI-accelerated efforts would be more effective still. Additionally, some biological advances actually make the logistics of distribution much easier: for example, malaria has been difficult to eradicate because it requires treatment each time the disease is contracted; a vaccine that only needs to be administered once makes the logistics much simpler (and such vaccines for malaria are in fact currently being developed). Even simpler distribution mechanisms are possible: some diseases could in principle be eradicated by targeting their animal carriers, for example releasing mosquitoes infected with a bacterium that blocks their ability to carry a disease (who then infect all the other mosquitos) or simply using gene drives to wipe out the mosquitos. This requires one or a few centralized actions, rather than a coordinated campaign that must individually treat millions. Overall, I think 5-10 years is a reasonable timeline for a good fraction (maybe 50%) of AI-driven health benefits to propagate to even the poorest countries in the world. A good goal might be for the developing world 5-10 years after powerful AI to at least be substantially healthier than the developed world is today, even if it continues to lag behind the developed world. Accomplishing this will of course require a huge effort in global health, philanthropy, political advocacy, and many other efforts, which both AI developers and policymakers should help with.
卫生干预措施的分发 。我最乐观的领域可能是在世界各地分发卫生干预措施。疾病实际上已经通过自上而下的运动而被根除:天花在 20 世纪 70 年代被完全消灭 ,脊髓灰质炎和麦地那龙线虫病也已接近根除,每年的病例不到 100 例。 数学上复杂的流行病学模型在疾病根除运动中发挥着积极作用,而且看起来很有可能比人类更聪明的 AI 系统能够比人类做得更好。分发的物流也可能得到大大优化。作为 GiveWell 的早期捐助者,我了解到一件事,那就是一些健康慈善机构比其他慈善机构有效得多;希望 AI 加速的努力会更加有效。此外,一些生物学上的进步实际上使分发的物流变得容易得多:例如,疟疾很难根除,因为每次感染这种疾病时都需要治疗;只需注射一次的疫苗使物流变得简单得多( 事实上,目前正在开发用于治疗疟疾的疫苗)。甚至可以采用更简单的分发机制:一些疾病原则上可以通过针对其动物携带者来根除,例如释放感染细菌的蚊子, 阻止它们携带疾病的能力 (然后这些蚊子会感染所有其他蚊子),或者简单地使用基因驱动来消灭蚊子。这只需要一项或几项集中行动,而不是必须单独治疗数百万只蚊子的协调行动。 总体而言,我认为 5-10 年是一个合理的时间表,可以让人工智能带来的健康益处(可能 50%)惠及世界上最贫穷的国家。一个好的目标可能是,在强大的人工智能出现 5-10 年后,发展中国家的健康状况至少要比今天的发达国家好得多,即使它仍然落后于发达国家。实现这一目标当然需要在全球健康、慈善、政治宣传和许多其他方面做出巨大努力,人工智能开发者和政策制定者都应该为此提供帮助。
在这里插入图片描述

Economic growth. Can the developing world quickly catch up to the developed world, not just in health, but across the board economically? There is some precedent for this: in the final decades of the 20th century, several East Asian economies achieved sustained ~10% annual real GDP growth rates, allowing them to catch up with the developed world. Human economic planners made the decisions that led to this success, not by directly controlling entire economies but by pulling a few key levers (such as an industrial policy of export-led growth, and resisting the temptation to rely on natural resource wealth); it’s plausible that “AI finance ministers and central bankers” could replicate or exceed this 10% accomplishment. An important question is how to get developing world governments to adopt them while respecting the principle of self-determination—some may be enthusiastic about it, but others are likely to be skeptical. On the optimistic side, many of the health interventions in the previous bullet point are likely to organically increase economic growth: eradicating AIDS/malaria/parasitic worms would have a transformative effect on productivity, not to mention the economic benefits that some of the neuroscience interventions (such as improved mood and focus) would have in developed and developing world alike. Finally, non-health AI-accelerated technology (such as energy technology, transport drones, improved building materials, better logistics and distribution, and so on) may simply permeate the world naturally; for example, even cell phones quickly permeated sub-Saharan Africa via market mechanisms, without needing philanthropic efforts. On the more negative side, while AI and automation have many potential benefits, they also pose challenges for economic development, particularly for countries that haven’t yet industrialized. Finding ways to ensure these countries can still develop and improve their economies in an age of increasing automation is an important challenge for economists and policymakers to address. Overall, a dream scenario—perhaps a goal to aim for—would be 20% annual GDP growth rate in the developing world, with 10% each coming from AI-enabled economic decisions and the natural spread of AI-accelerated technologies, including but not limited to health. If achieved, this would bring sub-Saharan Africa to the current per-capita GDP of China in 5-10 years, while raising much of the rest of the developing world to levels higher than the current US GDP. Again, this is a dream scenario, not what happens by default: it’s something all of us must work together to make more likely.
经济增长 。发展中国家能否迅速赶上发达国家,不仅是在健康方面,而是在经济方面?这方面有一些先例:在 20 世纪的最后几十年, 几个东亚经济体实现了持续约 10% 的年实际 GDP 增长率,从而赶上了发达国家。人类经济规划者做出了导致这一成功的决策,他们不是通过直接控制整个经济体,而是通过拉动几个关键杠杆(例如出口导向型增长的产业政策,以及抵制依赖自然资源财富的诱惑);“人工智能财政部长和央行行长”可以复制或超越这 10% 的成就,这是合理的。一个重要的问题是,如何让发展中国家政府在尊重自决原则的同时采用它们——有些人可能对此充满热情,但其他人可能会持怀疑态度。从乐观的角度来看,上一条中的许多健康干预措施可能会有机地促进经济增长:根除艾滋病/疟疾/寄生虫将对生产力产生变革性影响,更不用说一些神经科学干预措施(如改善情绪和注意力)在发达国家和发展中国家都会产生的经济效益。最后,非健康人工智能加速技术(如能源技术、运输无人机、改进的建筑材料、更好的物流和配送等)可能会自然地渗透到世界各地;例如,甚至手机也通过市场机制迅速渗透到撒哈拉以南非洲,而无需慈善努力。 从更负面的角度来看,虽然人工智能和自动化有许多潜在的好处,但它们也对经济发展构成了挑战,特别是对尚未工业化的国家。在自动化程度不断提高的时代,如何确保这些国家仍能发展和改善经济,是经济学家和政策制定者面临的重要挑战。总的来说,一个理想的情况——也许是一个值得努力的目标——是发展中国家的 GDP 年增长率为 20%,其中 10% 来自人工智能支持的经济决策和人工智能加速技术的自然传播,包括但不限于医疗保健。如果实现这一目标,撒哈拉以南非洲将在 5-10 年内达到中国目前的人均 GDP,同时将其他大部分发展中国家的 GDP 提高到高于美国目前 GDP 的水平。再说一次,这是一个理想的情况,而不是默认发生的事情:这是我们所有人必须共同努力才能实现的事情。

Food security 24. Advances in crop technology like better fertilizers and pesticides, more automation, and more efficient land use drastically increased crop yields across the 20th Century, saving millions of people from hunger. Genetic engineering is currently improving many crops even further. Finding even more ways to do this—as well as to make agricultural supply chains even more efficient—could give us an AI-driven second Green Revolution, helping close the gap between the developing and developed world.
粮食安全 24 。20 世纪,农作物技术的进步(如更好的肥料和杀虫剂、更多的自动化和更高效的土地利用)大幅提高了农作物产量 ,拯救了数百万人免于饥饿。基因工程目前正在进一步改良许多作物。找到更多方法来实现这一点,以及使农业供应链更加高效,可能会给我们带来人工智能驱动的第二次绿色革命 ,帮助缩小发展中国家和发达国家之间的差距。

Mitigating climate change. Climate change will be felt much more strongly in the developing world, hampering its development. We can expect that AI will lead to improvements in technologies that slow or prevent climate change, from atmospheric carbon-removal and clean energy technology to lab-grown meat that reduces our reliance on carbon-intensive factory farming. Of course, as discussed above, technology isn’t the only thing restricting progress on climate change—as with all of the other issues discussed in this essay, human societal factors are important. But there’s good reason to think that AI-enhanced research will give us the means to make mitigating climate change far less costly and disruptive, rendering many of the objections moot and freeing up developing countries to make more economic progress.
缓解气候变化 。气候变化对发展中国家的影响将更为强烈,阻碍其发展。我们可以预期,人工智能将带来减缓或防止气候变化的技术改进,包括大气碳去除 和 清洁能源技术到实验室培育的肉类 ,减少了我们对碳密集型工厂化养殖的依赖。当然,如上所述,技术并不是制约气候变化进展的唯一因素——与本文讨论的所有其他问题一样,人类社会因素也很重要。但有充分的理由认为,人工智能增强的研究将为我们提供方法,使缓解气候变化的成本大大降低,破坏性大大降低,使许多反对意见变得毫无意义,并使发展中国家能够取得更多的经济进步。

Inequality within countries. I’ve mostly talked about inequality as a global phenomenon (which I do think is its most important manifestation), but of course inequality also exists within countries. With advanced health interventions and especially radical increases in lifespan or cognitive enhancement drugs, there will certainly be valid worries that these technologies are “only for the rich”. I am more optimistic about within-country inequality especially in the developed world, for two reasons. First, markets function better in the developed world, and markets are typically good at bringing down the cost of high-value technologies over time25. Second, developed world political institutions are more responsive to their citizens and have greater state capacity to execute universal access programs—and I expect citizens to demand access to technologies that so radically improve quality of life. Of course it’s not predetermined that such demands succeed—and here is another place where we collectively have to do all we can to ensure a fair society. There is a separate problem in inequality of wealth (as opposed to inequality of access to life-saving and life-enhancing technologies), which seems harder and which I discuss in Section 5.
国家内部的不平等 。我主要谈论的是不平等作为一种全球现象(我确实认为这是其最重要的表现),但当然国家内部也存在不平等。随着先进的健康干预措施,尤其是寿命或认知增强药物的大幅增加,人们肯定会担心这些技术“只属于富人”。我对国家内部的不平等,特别是发达国家的不平等更为乐观,原因有二。首先,发达国家的市场功能更好,而且市场通常擅长随着时间的推移降低高价值技术的成本 25 。其次,发达国家的政治机构对其公民的响应更快,并且具有更大的国家能力来执行普遍使用计划——我希望公民能够要求获得能够彻底改善生活质量的技术。当然,这种要求并不一定就能成功——在这里,我们必须共同尽一切努力确保社会公平。 财富不平等(相对于获得拯救生命和改善生活的技术的不平等)存在一个单独的问题,这个问题似乎更难解决,我将在第 5 部分中讨论。

The opt-out problem. One concern in both developed and developing world alike is people opting out of AI-enabled benefits (similar to the anti-vaccine movement, or Luddite movements more generally). There could end up being bad feedback cycles where, for example, the people who are least able to make good decisions opt out of the very technologies that improve their decision-making abilities, leading to an ever-increasing gap and even creating a dystopian underclass (some researchers have argued that this will undermine democracy, a topic I discuss further in the next section). This would, once again, place a moral blemish on AI’s positive advances. This is a difficult problem to solve as I don’t think it is ethically okay to coerce people, but we can at least try to increase people’s scientific understanding—and perhaps AI itself can help us with this. One hopeful sign is that historically anti-technology movements have been more bark than bite: railing against modern technology is popular, but most people adopt it in the end, at least when it’s a matter of individual choice. Individuals tend to adopt most health and consumer technologies, while technologies that are truly hampered, like nuclear power, tend to be collective political decisions.
选择退出问题 。发达国家和发展中国家都担心人们选择退出人工智能带来的好处(类似于反疫苗运动或更普遍的卢德运动)。这最终可能会形成不良的反馈循环,例如,最没有能力做出正确决策的人选择退出那些可以提高他们决策能力的技术,导致差距不断扩大,甚至形成一个反乌托邦的下层阶级(一些研究人员认为这会破坏民主 ,我将在下一节进一步讨论这个话题)。这将再次给人工智能的积极进步带来道德污点。这是一个很难解决的问题,因为我认为强迫人们在道德上是不对的,但我们至少可以尝试提高人们的科学理解力——也许人工智能本身可以帮助我们做到这一点。一个令人欣慰的迹象是,历史上的反科技运动都是叫嚣多于实际行动:对现代科技的抨击很普遍,但大多数人最终还是会接受它,至少在个人选择的情况下是如此。个人倾向于采用大多数健康和消费技术,而真正受到阻碍的技术,如核能,往往是集体政治决策。

Overall, I am optimistic about quickly bringing AI’s biological advances to people in the developing world. I am hopeful, though not confident, that AI can also enable unprecedented economic growth rates and allow the developing world to at least surpass where the developed world is now. I am concerned about the “opt out” problem in both the developed and developing world, but suspect that it will peter out over time and that AI can help accelerate this process. It won’t be a perfect world, and those who are behind won’t fully catch up, at least not in the first few years. But with strong efforts on our part, we may be able to get things moving in the right direction—and fast. If we do, we can make at least a downpayment on the promises of dignity and equality that we owe to every human being on earth.
总体而言,我对迅速将人工智能的生物学进步带给发展中国家人民持乐观态度。我希望,尽管不是那么有信心,人工智能也能实现前所未有的经济增长率,让发展中国家至少超越发达国家现在的水平。我担心发达国家和发展中国家的“选择退出”问题,但我认为随着时间的推移,这个问题会逐渐消失,人工智能可以帮助加速这一进程。这不会是一个完美的世界,落后的人不会完全赶上,至少在最初几年不会。但只要我们付出巨大努力,我们也许能够让事情朝着正确的方向发展——而且要快。如果我们这样做了,我们至少可以兑现我们对地球上每个人应尽的尊严和平等的承诺。

参考

https://darioamodei.com/machines-of-loving-grace

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值