【数据结构】哈夫曼树的C++面向对象实现

“哈夫曼树”介绍

给定N个权值作为N个叶子结点,构造一棵二叉树,若该树的带权路径长度达到最小,称这样的二叉树为最优二叉树,也称为哈夫曼树(Huffman Tree)

特点

哈夫曼树是带权路径长度最短的树,权值较大的结点离根较近

相关术语

1.路径和路径长度

在一棵树中,从一个结点往下可以达到的孩子或孙子结点之间的通路,称为路径。通路中分支的数目称为路径长度。若规定根结点的层数为1,则从根结点到第L层结点的路径长度为L-1

2.结点的权及带权路径长度

若将树中结点赋给一个有着某种含义的数值,则这个数值称为该结点的权。结点的带权路径长度为:从根结点到该结点之间的路径长度与该结点的权的乘积

3.树的带权路径长度

树的带权路径长度规定为所有叶子结点的带权路径长度之和

前期准备

结构体——存储结点信息

struct ElemType{
    int weight;
    int parent,lchild,rchild;
};

类的声明

class HuffmanTree
{
public:
	HuffmanTree(int w[ ], int n);
	HuffmanTree( );
	void Print( );
private:
	ElemType *huffTree;						//数组用于存储哈夫曼树
	int num;								//统计叶子结点数量
	void Select(int n, int &i1, int &i2);	//选取叶子函数
};

类的实现

成员函数

1.构造函数

使用数组存储结点数据。
构造思路:
(1)对结构体数组初始化(包括建立空间、标记父子关系)并将叶子结点 w1、w2、…,wn的权值抄入结构体数组中;
(2) 选出两个根结点的权值最小的树合并,作为一棵新树的左、右子树,且新树的根结点权值为其左、右子树根结点权值之和;并对新结点和子树进行匹配;
(3)将新树加入数组中(放入叶子结点后面的位置);
(4)重复(2)、(3)步,直到森林中只剩一棵树为止,该树即为所求得的哈夫曼树。

含n个叶子结点的二叉树经过合并后,分支结点共(n-1)个,哈夫曼树的结点数为(2n-1).

HuffmanTree::HuffmanTree(int w[ ], int n){
    //构造哈夫曼树
    num=n;
    huffTree=new ElemType[2*n-1];		//建立存储数组 
    int i,k,i1,i2;                      //i为叶子结点循环变量,k标记求和后的节点,i1、i2标记最小次小元素位置
    for(int i=0;i<2*num-1;i++){           //初始化,将parent、lchild、rchild均置为-1
    huffTree[i].parent=-1;
    huffTree[i].lchild=huffTree[i].rchild=-1;
    }
    
    for(int i=0;i<num;i++){
        huffTree[i].weight=w[i];	//传叶子结点 
    }

    for(int k=num;k<2*num-1;k++){   //k从数组最后开始,对应权值存储权重数组内最小的俩元素下标

        Select( k ,i1,i2 );
        huffTree[k].weight = huffTree[i1].weight+huffTree[i2].weight;
        huffTree[i1].parent= k; huffTree[i2].parent=k;
        huffTree[k].lchild = i1;huffTree[k].rchild = i2;
    }
}
2.选取叶子函数Select

遍历叶子结点,对最小和次小的叶子结点合并,为建哈夫曼树做准备

程序声明时,对i1、i2使用引用参数,使得i1、i2的值都可返回到调用位置,并参与调用位置后面的运算。

程序执行前,i1、i2为异常值,函数执行时,从第一个不存在父节点的叶子结点(未进行父子配对的结点)开始,依次找寻最小和次小结点,更新i1、i2的数值。

P.S.程序执行过程,大家可以自行列表模拟,代码不难理解~~

上代码:

void HuffmanTree::Select(int n, int &i1, int &i2)
{
	int temp;
	int i = 0;
	for ( ; i < n; i++)
		if (huffTree[i].parent == -1) {i1 = i; break;}
	for (i = i + 1; i < n; i++)
		if (huffTree[i].parent == -1) {i2 = i;break;}
	if (huffTree[i1].weight > huffTree[i2].weight)  //左边大于右边
	{
		temp = i1; i1 = i2;i2 = temp;               //小的是左孩子、大的是右孩子
	}
	//从i2的下一位置开始遍历,继续找小的元素,更新i1、i2的值
		for (i = i + 1; i < n; i++)
	{
		if (huffTree[i].parent == -1)
		{
			if (huffTree[i].weight < huffTree[i1].weight)
			{
				i2 = i1; i1 = i;
			}
			else if (huffTree[i].weight < huffTree[i2].weight)
			{
				i2 = i;
			}
		}
	}
}
3.析构

使用数组静态存储,无需释放空间,析构函数为空

4.输出函数

输出构造的二叉树中叶子结点到根结点的路径及每个结点的权值

输出时,从叶子结点出发,一直到根结点,输出路径及权重。

void HuffmanTree::Print( ){	
	//输出构造的二叉树中叶子结点到根结点的路径及每个结点的权值(每个结点的数值为孩子权值之和) 
	int i,k;//i用来遍历最初的叶子结点,K用来遍历有孩子的结点(非叶子结点) 
	cout << "叶子到根结点的路径:" << endl; 
	
	for(i=0;i<num;i++){
		cout << huffTree[i].weight;
		k = huffTree[i].parent;
		while (k != -1)	//循环输出结点 
		{
			cout << "-->" << huffTree[k].weight;
			k = huffTree[k].parent;		//继续往上找叶子结点的父结点的父结点(直到根结点) 
		}
		cout << endl;
	}
}
类的完整代码
class HuffmanTree
{
public:
	HuffmanTree(int w[ ], int n);
	HuffmanTree( );
	void Print( );
private:
	ElemType *huffTree;
	int num;
	void Select(int n, int &i1, int &i2);
};

void HuffmanTree::Select(int n, int &i1, int &i2)
{
	int temp;
	int i = 0;
	for ( ; i < n; i++)
		if (huffTree[i].parent == -1) {i1 = i; break;}
	for (i = i + 1; i < n; i++)
		if (huffTree[i].parent == -1) {i2 = i;break;}
	if (huffTree[i1].weight > huffTree[i2].weight)  //左边大于右边
	{
		temp = i1; i1 = i2;i2 = temp;               //小的是左孩子、大的是右孩子
	}
	//从i2的下一位置开始遍历,继续找小的元素,更新i1、i2的值
		for (i = i + 1; i < n; i++)
	{
		if (huffTree[i].parent == -1)
		{
			if (huffTree[i].weight < huffTree[i1].weight)
			{
				i2 = i1; i1 = i;
			}
			else if (huffTree[i].weight < huffTree[i2].weight)
			{
				i2 = i;
			}
		}
	}
}

HuffmanTree::HuffmanTree(int w[ ], int n){
    //构造哈夫曼树
    num=n;
    huffTree=new ElemType[2*n-1];		//建立存储数组 
    int i,k,i1,i2;                      //i为叶子结点循环变量,k标记求和后的节点,i1、i2标记最小次小元素位置
    for(int i=0;i<2*num-1;i++){           //初始化,将parent、lchild、rchild均置为-1
    huffTree[i].parent=-1;
    huffTree[i].lchild=huffTree[i].rchild=-1;
    }
    
    for(int i=0;i<num;i++){
        huffTree[i].weight=w[i];	//传叶子结点 
    }

    for(int k=num;k<2*num-1;k++){   //k从数组最后开始,对应权值存储权重数组内最小的俩元素下标

        Select( k ,i1,i2 );
        huffTree[k].weight = huffTree[i1].weight+huffTree[i2].weight;
        huffTree[i1].parent= k; huffTree[i2].parent=k;
        huffTree[k].lchild = i1;huffTree[k].rchild = i2;
    }
}

void HuffmanTree::Print( ){	
	//输出构造的二叉树中叶子结点到根结点的路径及每个结点的权值(每个结点的数值为孩子权值之和) 
	int i,k;//i用来遍历最初的叶子结点,K用来遍历有孩子的结点(非叶子结点) 
	cout << "叶子到根结点的路径:" << endl; 
	
	for(i=0;i<num;i++){
		cout << huffTree[i].weight;
		k = huffTree[i].parent;
		while (k != -1)	//循环输出结点 
		{
			cout << "-->" << huffTree[k].weight;
			k = huffTree[k].parent;		//继续往上找叶子结点的父结点的父结点(直到根结点) 
		}
		cout << endl;
	}
}

主函数

主函数部分使用C++动态数组,可自定义叶子节点数目。通过调用类的对象,完成建树并输出。

int main(){
	int n;
	cout<<"输入叶子结点的数量:";
	cin>>n; 
	int *h = new int [n]; 
	cout<<"输入叶子结点的权值:"; 
	for(int i=0;i<n;i++) 
		cin>>h[i];
	
	cout<<"-------------------------------------"<<endl;
	cout<<"叶子结点的权值分别是:";
	for(int i=0;i<n;i++)
		cout<<h[i]<<" ";
		cout<<endl;
	
	cout<<"-------------------------------------"<<endl;
	HuffmanTree H(h, 4);
	H.Print();
	
	delete []h;
	
	return 0;
}

程序完整源码

#include<iostream>
using namespace std;
struct ElemType{
    int weight;
    int parent,lchild,rchild;
};
class HuffmanTree
{
public:
	HuffmanTree(int w[ ], int n);
	HuffmanTree( );
	void Print( );
private:
	ElemType *huffTree;
	int num;
	void Select(int n, int &i1, int &i2);
};

void HuffmanTree::Select(int n, int &i1, int &i2)
{
	int temp;
	int i = 0;
	for ( ; i < n; i++)
		if (huffTree[i].parent == -1) {i1 = i; break;}
	for (i = i + 1; i < n; i++)
		if (huffTree[i].parent == -1) {i2 = i;break;}
	if (huffTree[i1].weight > huffTree[i2].weight)  //左边大于右边
	{
		temp = i1; i1 = i2;i2 = temp;               //小的是左孩子、大的是右孩子
	}
	//从i2的下一位置开始遍历,继续找小的元素,更新i1、i2的值
		for (i = i + 1; i < n; i++)
	{
		if (huffTree[i].parent == -1)
		{
			if (huffTree[i].weight < huffTree[i1].weight)
			{
				i2 = i1; i1 = i;
			}
			else if (huffTree[i].weight < huffTree[i2].weight)
			{
				i2 = i;
			}
		}
	}
}

HuffmanTree::HuffmanTree(int w[ ], int n){
    //构造哈夫曼树
    num=n;
    huffTree=new ElemType[2*n-1];		//建立存储数组 
    int i,k,i1,i2;                      //i为叶子结点循环变量,k标记求和后的节点,i1、i2标记最小次小元素位置
    for(int i=0;i<2*num-1;i++){           //初始化,将parent、lchild、rchild均置为-1
    huffTree[i].parent=-1;
    huffTree[i].lchild=huffTree[i].rchild=-1;
    }
    
    for(int i=0;i<num;i++){
        huffTree[i].weight=w[i];	//传叶子结点 
    }

    for(int k=num;k<2*num-1;k++){   //k从数组最后开始,对应权值存储权重数组内最小的俩元素下标

        Select( k ,i1,i2 );
        huffTree[k].weight = huffTree[i1].weight+huffTree[i2].weight;
        huffTree[i1].parent= k; huffTree[i2].parent=k;
        huffTree[k].lchild = i1;huffTree[k].rchild = i2;
    }
}

void HuffmanTree::Print( ){	
	//输出构造的二叉树中叶子结点到根结点的路径及每个结点的权值(每个结点的数值为孩子权值之和) 
	int i,k;//i用来遍历最初的叶子结点,K用来遍历有孩子的结点(非叶子结点) 
	cout << "叶子到根结点的路径:" << endl; 
	
	for(i=0;i<num;i++){
		cout << huffTree[i].weight;
		k = huffTree[i].parent;
		while (k != -1)	//循环输出结点 
		{
			cout << "-->" << huffTree[k].weight;
			k = huffTree[k].parent;		//继续往上找叶子结点的父结点的父结点(直到根结点) 
		}
		cout << endl;
	}
}

int main(){
	int n;
	cout<<"输入叶子结点的数量:";
	cin>>n; 
	int *h = new int [n]; 
	cout<<"输入叶子结点的权值:"; 
	for(int i=0;i<n;i++) 
		cin>>h[i];
	
	cout<<"-------------------------------------"<<endl;
	cout<<"叶子结点的权值分别是:";
	for(int i=0;i<n;i++)
		cout<<h[i]<<" ";
		cout<<endl;
	
	cout<<"-------------------------------------"<<endl;
	HuffmanTree H(h, 4);
	H.Print();
	
	delete []h;
	
	return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值