RNA位点预测
文章平均质量分 95
风灬陌
风过无痕,陌路红尘
展开
-
论文解读:《基于注意力的多标签神经网络用于12种广泛存在的RNA修饰的综合预测和解释》
最近的研究表明,通过转录后RNA修饰的表达转录调控对所有类型的RNA都是至关重要的。精确地确定RNA修饰位点对于理解RNA的功能和调控机制至关重要。作者提出一种方法:MultiRM,可以综合预测和解释转录后RNA修饰。该方法建立在一个基于注意力机制的多标签预测深度学习框架上,MultiRM不仅可以同时预测十二个广泛发生的RNA转录组修饰(m6A,m1A,m5C,m5U,m6Am,m7G,ψ,I,Am,Cm,Gm,Um)的位置,而且还可以返回对正面预测贡献最大的关键序列内容。翻译 2022-03-27 12:50:28 · 3203 阅读 · 2 评论 -
论文解读:《利用深度学习方法识别RNA伪尿苷位点》
伪尿苷(Pseudouridine,Ψ)在核糖核酸、核糖核酸、转录核糖核酸和核仁核仁等多种核糖核酸修饰中广泛存在。因此,鉴定它们在学术研究、药物开发和基因治疗等方面具有重要意义。本文提出了一种采用二进制编码的多通道卷积神经网络。作者使用k折交叉验证和网格搜索来调整超参数。在独立的数据集上评估了它的性能,发现了有希望的结果。结果证明,作者的方法可以用于识别相关目的的伪尿苷位点。翻译 2021-04-10 21:24:17 · 824 阅读 · 2 评论 -
论文解读:《iPseU‑Layer: 利用分层集成模型识别RNA伪尿苷(嘧啶)位点》
伪尿苷(嘧啶)是最普遍的RNA转录后修饰之一。伪尿苷(嘧啶)位点的鉴定是理解RNA功能、RNA结构稳定、翻译过程和RNA稳定性的重要一步;然而,在实验室探索和生化过程中,高通量实验技术仍然昂贵且耗时。所以,作者提出了一个有效的分层集成模型IPseU-Layer来识别RNA伪尿苷(嘧啶)位点。IPSEU-Layer方法本质上是基于三个不同的机器学习层,包括:特征选择层、特征提取与融合层和预测层。在此基础上,利用现有模型系统地进行了交叉验证测试和独立测试的验证实验。翻译 2021-04-10 10:47:54 · 634 阅读 · 2 评论