漏洞挖掘 | 绕过 Mozilla 的邮箱验证

  更多资料分享可看:

 Track 安全社区 — 掌控安全在线教育- Track 知识社区 - 掌控安全在线教育 - Powered by 掌控者

分享一个在 Mozilla 的某款产品中的有趣业务逻辑漏洞。

应用的工作原理

首先,让我快速介绍一下该应用的工作原理。

Mozilla Monitor 旨在帮助用户了解数据泄露情况。用户可以使用邮箱注册该服务,以便在他们的凭据在任何已知的泄露事件中被曝光时收到提醒。它通过扫描大量泄露数据的数据库并与用户邮箱进行交叉对比,从而通知用户其信息是否被暴露。


架构

从架构上看,该应用的数据泄露信息由 haveibeenpwned.com 提供支持。在此基础上,我们的重点将转向识别和解决特定的逻辑漏洞。

图片

主要功能 如前所述,该应用的核心功能是为监控添加电子邮件地址。在免费试用中,每个 Mozilla 账户最多可以添加五个邮箱。

例如,假设你添加了一个邮箱地址(如 moraa@gmail.com),系统会向该邮箱发送验证令牌。需要确认该令牌后,监控功能才能激活。

图片

图片

深入研究 Mozilla 的 Monitor 产品

我首先检查了响应中是否有任何泄露的验证令牌,但该部分的处理非常到位。接着,我尝试通过各种技巧来操纵发送到服务器的请求。例如,我尝试在同一个请求中添加多个邮箱地址,希望触发错误或发现潜在的漏洞。我还测试了竞争条件,通过在一个连接中发送多个邮箱,查看服务器是否会错误处理请求或将相同的验证令牌发送到不同的邮箱。然而,服务器再一次表现得毫无破绽。

还有一个问题!验证令牌长度太长,无法被猜测或通过暴力破解解决。例如,一个像 8034a6f3-cecd-49a4-9c43-2cf5976380a1 这样的令牌几乎不可能破解。

图片

没有验证令牌,对我们黑客来说真是个麻烦事 :))


源代码审查

幸运的是,Mozilla 的产品是开源的。所以,我决定深入研究该产品 https://github.com/mozilla/blurts-server的开源代码,并花时间仔细审查。

图片

我很幸运地发现了一个可以检索账户中所有添加邮箱的接口 /api/v1/user/breaches,同时还可以获取每个已验证邮箱关联的数据泄露信息。这是一个绝妙的发现!现在,让我们进一步探索它的功能,以便更好地理解。

图片

getAllEmailsAndBreaches 函数的详细说明

通过搜索 getAllEmailsAndBreaches 函数,我发现该函数不仅检索已验证邮箱的数据,还会返回未验证邮箱的信息。

图片

getAllEmailsAndBreaches 函数的设计目的是收集并返回与用户关联的邮箱地址及这些邮箱相关的数据泄露信息。以下是该函数的工作方式以及它在处理已验证和未验证邮箱方面的影响:

函数定义和参数

该函数接受两个参数:

1.user:包含关于用户及其关联邮箱地址的信息。

2.allBreaches:一个从数据库中获取的数据泄露记录数组。

图片

数组初始化

初始化了两个数组来存储已验证和未验证的电子邮件verifiedEmails 数组将存储已确认有效的电子邮件,而 unverifiedEmails 数组则存储尚未验证的电子邮件。

图片

错误处理

该函数包含错误处理机制,以确保用户对象和泄露列表是有效的。

图片

检索用户电子邮件

这一行调用 getUserEmails 函数,从数据库中获取与用户关联的所有电子邮件地址。需要注意的是,这可能包括已验证和未验证的电子邮件 :))

图片

处理已验证和未验证的电子邮件

用户在 accounts.firefox.com 上的主要电子邮件始终首先进行处理,并被打包到 verifiedEmails 数组中:

图片

接下来,函数遍历 monitoredEmails。对于每个电子邮件,如果它被标记为已验证,则将其打包到 verifiedEmails 数组中。如果电子邮件未验证,则将其添加到 unverifiedEmails 数组中:

图片

返回数据

在函数的末尾,已验证和未验证的电子邮件作为对象的一部分返回。这意味着该函数暴露了未验证电子邮件的信息,如果处理不当,可能会导致安全隐患。

图片

验证令牌在响应中泄露

如我们所见,未验证电子邮件返回的数据没有经过验证。当我访问这个端点时,发现未验证电子邮件的响应中泄露了验证令牌!

图片

验证电子邮件端点

我能够抓取到验证令牌,并将其用于验证电子邮件端点来确认电子邮件。现在,由于这个配置错误,我可以轻松地监控任何我想要的电子邮件,而不需要电子邮件所有者的权限 :))

图片

图片

电子邮件已经通过验证,现在可以监控它了 :))

图片

通过移除未使用的 API 端点 /user/breaches API GET 端点修复了漏洞

图片

结论

总之,Mozilla Monitor 产品中的这个漏洞突显了彻底测试业务逻辑和访问控制的重要性。通过源代码审查,我发现了一个函数中的缺陷,使我能够绕过电子邮件验证,这展示了即使是小小的疏忽也可能导致重大的安全风险。Mozilla 迅速回应并解决了这个问题,体现了他们对用户安全的强烈承诺。我希望这篇总结能强调细致的代码分析和强有力的安全测试在识别和缓解此类漏洞中的价值。

 更多资料分享可看:

 Track 安全社区 — 掌控安全在线教育- Track 知识社区 - 掌控安全在线教育 - Powered by 掌控者

无偿领取网安资料+zkanzz  

申明:本账号所分享内容仅用于网络安全技术讨论,切勿用于违法途径,所有渗透都需获取授权,违者后果自行承担,与本号及作者无关

<think>好的,用户之前询问了HTTP流量回放可以挖掘哪些Web应用漏洞类型,现在他们想知道如何实现一个Web漏洞挖掘模块。我需要从之前的回答中提取相关的技术点,然后结合系统设计来构建这个模块。 首先,用户可能是一位安全工程师或者开发人员,想要自己构建一个自动化漏洞扫描工具。他们需要了解整个模块的架构、核心组件以及实现的关键技术。之前的回答已经覆盖了漏洞类型,现在需要转向如何具体实现检测这些漏洞的模块。 接下来,我需要考虑实现漏洞挖掘模块的主要步骤。可能包括流量采集、数据处理、漏洞检测引擎、结果分析等部分。需要详细说明每个部分的功能和实现方法,比如流量采集可以使用代理或日志,数据处理需要规范化和去重,漏洞检测需要规则引擎和动态插桩等。 然后,要结合之前提到的漏洞类型,比如SQL注入、XSS、越权访问等,说明在检测模块中如何针对这些漏洞设计检测策略。例如,对于SQL注入,可以使用规则匹配和模糊测试,而越权访问则需要参数变异和上下文关联分析。 还需要考虑关键技术点,比如流量变异策略、上下文感知、沙箱环境等,这些都是确保检测有效性和安全性的重要因素。同时,性能优化和误报率控制也是用户可能关心的问题,需要提到并发控制和机器学习去误报的方法。 另外,用户可能对现有的开源工具和框架感兴趣,比如Sqlmap、XSpear,以及如何集成它们。这部分可以作为扩展参考,帮助用户快速搭建原型。 最后,要总结实现过程中的挑战和最佳实践,比如隔离测试环境、版本迭代、合规性等,确保用户在实际操作中能避免常见问题,提高模块的效率和准确性。</think>### Web漏洞挖掘模块实现方案 --- #### 一、系统架构设计 ```mermaid graph TD A[流量采集层] --> B[数据处理层] B --> C[漏洞检测引擎] C --> D[结果分析层] D --> E[可视化报告] ``` --- #### 二、核心组件实现 **1. 流量采集模块** - **实现方式**: - 中间人代理(MITM):拦截HTTP/HTTPS流量 - 服务端日志解析:处理Nginx/Apache访问日志 - 浏览器插件:记录前端DOM操作 - **关键技术**: ```python # 使用mitmproxy实现流量捕获 from mitmproxy import http def request(flow: http.HTTPFlow): if flow.request.pretty_url.endswith(".php"): save_to_database(flow.request) ``` **2. 数据预处理模块** - **功能实现**: - 参数标准化:将`%20`转换为空格等URL解码 - 会话重组:基于Cookie/SessionID合并相关请求 - 敏感信息脱敏:自动过滤密码、Token等字段 - **数据结构**: ```json { "timestamp": "2023-08-20T14:23:18Z", "method": "POST", "path": "/api/login", "params": { "username": "test", "password": "******" }, "headers": { "User-Agent": "Mozilla/5.0" } } ``` --- #### 三、漏洞检测引擎 **1. 规则库构建** | 漏洞类型 | 检测策略 | 示例规则 | |----------------|--------------------------------------------------------------------------|-------------------------------------------------------------| | **SQL注入** | 语法特征匹配 + 响应差异分析 | `检测包含'sleep(5)'且响应延迟>4秒的请求` | | **XSS** | DOM树变异检测 + HTML实体编码验证 | `插入<img/src/onerror=alert(1)>后验证事件触发` | | **越权访问** | ID序列爆破 + 响应内容相似度对比 | `遍历/user/{id},对比不同ID返回数据的相似度阈值<15%` | **2. 动态插桩技术** - **实现原理**: - 在Web容器中注入探针监控以下行为: ```java // Java Agent示例(检测RCE) Runtime.exec() → 记录执行参数 SQLDriver.connect() → 捕获原始SQL语句 ``` - **风险行为监控**: - 文件系统操作(create/delete) - 反射机制调用 - 反序列化操作 **3. 模糊测试框架** - **变异策略**: ```python def mutate_params(params): for key in params: # 类型推断变异 if is_numeric(params[key]): params[key] = random.randint(0, 10000) elif is_string(params[key]): params[key] = f"' {random.choice(SQL_KEYWORDS)} --" # 结构变异 if random.random() < 0.2: params[key] += "../../etc/passwd" return params ``` --- #### 四、关键技术实现 **1. 流量变异引擎** - **智能变异算法**: ```python class SmartMutator: def __init__(self): self.markov_chain = load_training_data("web_logs.csv") def generate_payload(self): # 基于马尔可夫链生成符合目标特征的Payload return self.markov_chain.generate() ``` **2. 上下文感知检测** - **状态维持机制**: - 维护虚拟用户会话状态机: ```python class SessionState: def __init__(self): self.csrf_tokens = {} self.auth_cookies = {} def update(self, response): if 'Set-Cookie' in response.headers: self.auth_cookies = parse_cookies(response) if 'csrf_token' in response.text: self.csrf_tokens = extract_csrf(response) ``` **3. 漏洞验证模块** - **误报消除策略**: - 二次验证流程: ```mermaid graph LR A[初步检测] --> B{是否高危漏洞?} B -->|| C[人工验证] B -->|| D[自动验证] D --> E[发送无害化Payload] E --> F{行为监控} F --> G[确认漏洞存在] ``` --- #### 五、系统优化方案 **1. 性能优化** - **并发控制**: ```go // Go语言实现并发控制器 func main() { sem := make(chan bool, 50) // 限制50并发 for req := range requestQueue { sem <- true go func(r Request) { defer func() { <-sem }() processRequest(r) }(req) } } ``` **2. 机器学习应用** - **误报过滤模型**: ```python # 使用XGBoost分类器 model = xgb.XGBClassifier() model.fit( X_train[['resp_code', 'resp_time', 'keyword_count']], y_train['is_false_positive'] ) ``` **3. 规则自更新** - **CVE监控流程**: ```bash # 自动化规则更新脚本 curl https://cve.mitre.org/data/downloads/allitems.csv | \ awk -F',' '/CVE-2023.*WEB/{print $2}' | \ xargs -I {} python add_rule.py --cve {} ``` --- #### 六、扩展参考方案 **1. 开源工具集成** | 工具名称 | 集成方式 | 适用场景 | |----------------|-----------------------------|-----------------------| | **Sqlmap** | REST API调用 | SQL注入深度检测 | | **XSStrike** | 作为XSS检测子模块 | 反射型/DOM型XSS | | **Nuclei** | 模板化规则导入 | 已知漏洞快速验证 | **2. 云原生部署** - **Kubernetes架构**: ```yaml apiVersion: apps/v1 kind: Deployment spec: containers: - name: crawler image: vuln-crawler:3.2 - name: analyzer image: vuln-analyzer:2.8 - name: reporter image: report-dashboard:1.4 ``` --- ### 实现挑战与最佳实践 **关键挑战**: 1. 动态Web框架(React/Vue)的DOM事件捕获 2. 加密流量(HTTP/3、QUIC协议)处理 3. 分布式系统的状态同步 **实施建议**: 1. 采用差分测试:对比生产环境与测试环境的响应差异 2. 建立漏洞知识图谱:关联CWE、CVE数据 3. 实现自动绕过机制:处理WAF、CC防护等安全设备 --- **总结**:完整的Web漏洞挖掘模块需要整合流量分析、规则引擎、模糊测试、行为监控等多维度技术。建议采用分层架构设计,结合机器学习的误报过滤和智能变异算法提升检测效率,同时通过容器化部署实现弹性扩展。对于业务系统,需特别注意添加无害化检测机制避免对生产环境造成影响。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值