使用CNN神经网络进行图片识别分类

这个代码比较老旧,请移步最新实现link:https://blog.csdn.net/zh_JNU/article/details/81018352,可在本文查看数据说明和在末尾下载数据集,谢谢~~~~~

接触深度学习3个月以来,从当初的小白零基础学习,过程十分艰苦,看了几章大牛 YoshuaBengio 写的deep learning一书,粗略了解了基本常用的神经网络以及梯度更新策略,参数优化,也了解以及简单的使用常用的深度学习开发框架caffe,tensorflow,theano,sklearn机器学习库,目前keras比较火,所以使用keras来简单的进行图片识别分类。

数据集准备:

看caffe博客的时候看到的数据集,然后就下载使用,数据集可以在最后下载。

数据集一共有5类图片,一共500张,每类图片100张,训练集400张,每类80张,测试集100张,每类20张

第一步:

数据集进行处理:

使用opencv对图片进行处理,缩放图片大小为128×128大小,通道为单通道灰度图像
#coding:utf8
import os
import cv2.cv as cv
import cv2
# 遍历指定目录,显示目录下的所有文件名
width_scale = 192 #缩放尺寸宽度
height_scale = 128#缩放尺寸高度
write_path = "/home/zhanghao/data/classification/test_scale/"#要写入的图片路径

#遍历每一张图片进行处理

def eachFile(filepath):
    pathDir =  os.listdir(filepath)
    for allDir in pathDir:
        child = os.path.join('%s%s' % (filepath,allDir))
    write_child = os.path.join('%s%s' % (write_path,allDir))
    image = cv.LoadImage(child,0)
    des_image = cv.CreateImage((width_scale,height_scale),image.depth,1)
    cv.Resize(image,des_image,cv2.INTER_AREA)
#    cv.ShowImage('afe',des_image)
    cv.SaveImage(write_child,des_image)
#    break
if __name__ == '__main__':
     filePathC = "/home/zhanghao/data/classification/test/"
     eachFile(filePathC)

第二步

把图片集制作成keras识别的数据集

#制作数据集
def data_label(path,count):
    data = np.empty((count,1,128,192),dtype = 'float32')#建立空的四维张量类型32位浮点
    label = np.empty((count,),dtype = 'uint8')
    i = 0
    pathDir = os.listdir(path)
    for each_image in pathDir:
        all_path = os.path.join('%s%s' % (path,each_image))#路径进行连接
        image = cv2.imread(all_path,0)
        mul_num = re.findall(r"\d",all_path)#寻找字符串中的数字,由于图像命名为300.jpg 标签设置为0
        num = int(mul_num[0])-3
#        print num,each_image
#        cv2.imshow("fad",image)
#        print child
        array = np.asarray(image,dtype='float32')
        data[i,:,:,:] = array
        label[i] = int(num)
        i += 1
    return data,label

第三步

构建卷积神经网络进行训练和测试

#构建卷积神经网络
def cnn_model(train_data,train_label,test_data,test_label):
    model = Sequential()
    model.add(Convolution2D(
        nb_filter = 12,
        nb_row = 3,
        nb_col = 3,
        border_mode = 'valid',
        dim_ordering = 'th',
        input_shape = (1,128,192)))
    model.add(Activation('relu'))#激活函数使用修正线性单元
    model.add(MaxPooling2D(
        pool_size = (2,2),
        strides = (2,2),
        border_mode = 'valid'))
    model.add(Convolution2D(
        24,
        3,
        3,
        border_mode = 'valid',
        dim_ordering = 'th'))
    model.add(Activation('relu'))
#池化层 24×29×29
    model.add(MaxPooling2D(
        pool_size = (2,2),
        strides = (2,2),
        border_mode = 'valid'))
    model.add(Convolution2D(
        48,
        3,
        3,
        border_mode = 'valid',
        dim_ordering = 'th'))
    model.add(Activation('relu'))
    model.add(MaxPooling2D(
        pool_size = (2,2),
        strides =(2,2),
        border_mode = 'valid'))
    model.add(Flatten())
    model.add(Dense(20))
    model.add(Activation(LeakyReLU(0.3)))
    model.add(Dropout(0.5))
    model.add(Dense(20))
    model.add(Activation(LeakyReLU(0.3)))
    model.add(Dropout(0.4))
    model.add(Dense(5,init = 'normal'))
    model.add(Activation('softmax'))
    adam = Adam(lr = 0.001)
    model.compile(optimizer = adam,
            loss =  'categorical_crossentropy',
            metrics = ['accuracy'])
    print '----------------training-----------------------'
    model.fit(train_data,train_label,batch_size = 12,nb_epoch = 35,shuffle = True,show_accuracy = True,validation_split = 0.1)
    print '----------------testing------------------------'
    loss,accuracy = model.evaluate(test_data,test_label)
    print '\n test loss:',loss
    print '\n test accuracy',accuracy

第四步

调用上述函数进行训练预测

train_path = '/home/zhanghao/data/classification/train_scale/'
test_path = '/home/zhanghao/data/classification/test_scale/'
train_count = getnum(train_path)
test_count = getnum(test_path)
train_data,train_label = data_label(train_path,train_count)
test_data,test_label = data_label(test_path,test_count)
train_label = np_utils.to_categorical(train_label,nb_classes = 5)
test_label = np_utils.to_categorical(test_label,nb_classes = 5)
cnn_model(train_data,train_label,test_data,test_label)

用到的头文件

import re
import cv2
import os
import numpy as np
import cv2.cv as cv
from keras.models import Sequential
from keras.layers.core import Dense,Activation,Flatten
from keras.layers.convolutional import Convolution2D,MaxPooling2D
from keras.optimizers import Adam

from keras.layers.advanced_activations import LeakyReLU

from keras.utils import np_utils


cpu运行,迭代50次,预测准确率达到92%,还算可以的准确率

具体实现代码:https://github.com/zhanghao-JNU/keras-training

路漫漫其修远兮,吾将上下而求索


数据集网盘链接链接:https://pan.baidu.com/s/1boDvWTL 密码:vxrb

有什么问题可以发邮件联系(zhanghao-jnu@qq.com)共同讨论进步,这个代码太老啦太low啦,有什么错误不要介意!!!!

评论 65
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值