GPR 问题 (ACM老题)公式总结

/*有排成一行的n个方格,用红粉绿三色涂每个格子,每格涂一色,要求任何相邻的方格不能同色,且首尾两个也不同色,求全部的满足要求的涂法*/

我总结了三个公式 

第一种:①假设n个方格的涂法为f(n)则 f(n)=f(n-1)+2*f(n-2)

第二种:②f(n)=(3*2^n-1)-f(n-1)  

第三种:③ n为偶数时  f(n)=2+2^n          n为奇数时f(n)=2^n-2

①假设n个方格的涂法为f(n)则 f(n)=f(n-1)+2*f(n-2)

怎么来的呢  我解释一下

假设有n(n>=3)个格子,这n个格子有f(n)种方法,而这f(n)种方法是在且首尾两个不同的前提下得到的 如果没有这个前提 方法会更多    当我加上第n+1个格子的时候   这时候对于第n个格子就没有上面的条件限制了  所以f(n+1)是要分情况讨论的    

1     如果第n个格子与第一个不同  也就是说第n+1个格子只有一种选择  那么这种情况就和 f(n)是一样的  即 此类情况下的方法数量上=f(n)

2    如果第n个格子与第1个格子颜色相同    那么  也就是说第n-1个格子与第1个格子是不相同的  不先考虑第n+1个格子

 先考虑   第n个格子与第1个格子颜色相同的情况有多少  显然这种情况有f(n-1)种 即 这种情况可以看作按照题目要求得到f(n-1)后直接在第n个格子上涂上了与第一个相同的颜色

而 因为第n个与第一个的颜色相同 导致了第n+1个格子有2种颜色的选择,即此类情况有  2*f(n-1)种

综上  f(n+1)=f(n)+2f(n-1)  

# include <stdio.h>
# define N 51  
int main(){
__int64 arr[N]={0,3,6,6,0},num,i;
for(i=4;i<N;i++)
arr[i]=arr[i-1]+2*arr[i-2];
while(scanf("%d",&num))
     printf("%I64d\n",arr[num]);
return 0;
}


②对于n个格子  先不考虑第n个与第一个相同的情况  

那么  一旦第一个格子三种颜色选择一个确定了  剩下的n-1个格子中 每一个有两种选择 有3*2^n-1  

此时再考虑第n个格子与第一个格子相同的情况  这种情况可以看作按照题目要求得到f(n-1)后直接在第n个格子上涂上了与第一个相同的颜色  有f(n-1)中

公式 : f(n)=(3*2^n-1)-f(n-1)  当然用这种方式编程确实亦可以  

③这个题目是可以推出公式的  用等比数列的和可以得到下面的公式

n为偶数时  f(n)=2+2^n

n为奇数时f(n)=2^n-2

具体推理:


如果N很大时 就可以借助这个公式进行推理  

下面的代码可以求出1---20000之间的任何一个 半秒内出结果  可以改改参数 求更高的数  

2^N次幂的最低位一定是 2 4 6  8  而且不会出现 9998这种情况

# include <stdio.h>
# define N 780  
# define MAX 20000   //第2的20000次方大约需要753个int的空间 每个int存8位
# define WEI 100000000//每8位存一段
int gainint(int *p,int a,int b);//如果是奇数返回1  偶数返回0
int chengfang(int m,int data[]);//计算2的m次幂返回位数
void main(){
    int data[N]={0},n,index,Flag;
printf("请输入n:(1--%d):",MAX);
Flag=gainint(&n,1,MAX);
    index = chengfang(n,data);
    data[1]+=2*(Flag?-1:1);
    if (index)     /* 检验数组是否溢出,若未溢出,则打印阶乘值 */
        printf("%d",data[index--]);
     while(index>0)
        printf("%08d",data[index--]); 
while(getchar()!='\n');
}
int gainint(int *p,int a,int b)
{
int c[2]={0,1};
do{
 scanf("%d",p);
 while(getchar()!='\n');  
       if(*p>b||*p<a)
  printf("输入有误,请重新输入(%d--%d):",a,b);
}while(*p>b||*p<a);
    return *p%2;   //如果是奇数返回1  偶数返回0
}
int chengfang(int m,int data[])
{
int i, j, k;
int index = 1;        //位数暂定为1
data[1]=1;           /* 初始化,令2^0=1 */
for (i=1; i<=m; i++)  /* 计算2的m次幂*/
{
for (j=1; j<=index; j++)
data[j]=data[j] * 2;/*每一位数字都乘以2,模仿乘法计算*/
for (k=1;k<index; k++)
if (data[k]>=WEI)   
{
data[k+1]+=data[k]/WEI;  /* 当前位向前进位 */
data[k]%=WEI;            /*当前位进位之后的值 */
}
/* 单独处理最高位,若计算之后的最高位>=WEI,则位数index加1 */
while (data[index] >=WEI && index <= N-1)
{
data[index+1] = data[index]/WEI;  /* 向最高位进位 */
data[index++]%=WEI;    /* 进位之后的值 位数index加1 */
}
}
return index <= N-1?index:0;/* 检验数组是否溢出,若未溢出,则返回位数 */
}


  • 2
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
GPR模型的具体公式如下: 假设我们有一组输入-输出数据$(X,y)$,其中$X$是输入的特征向量(可以是多维的),$y$是对应的输出值。 我们的目标是构建一个函数$f(x)$,将输入特征向量$x$映射到输出值$y$,同时还要对未知数据进行预测。 GPR模型使用高斯分布来建模$f(x)$,即: $$f(x) \sim \mathcal{GP}(m(x),k(x,x'))$$ 其中,$m(x)$是均值函数,$k(x,x')$是协方差函数,$\mathcal{GP}$表示高斯过程。 对于给定的一组输入特征向量$X$,我们可以构建其对应的输出$y$的高斯分布: $$y \sim \mathcal{N}(f(X),\sigma^2I)$$ 其中,$f(X)$是输入特征向量$X$对应的输出均值向量,$\sigma^2$是噪声方差,$I$是单位矩阵。 给定一组训练数据$(X,y)$,我们可以通过最大化训练数据的边缘似然函数来求解出均值函数和协方差函数的参数。具体而言,我们可以通过求解以下最优化问题来得到模型的参数: $$\max_{m,k} \log p(y|X,m,k) = -\frac{1}{2}y^T(K+\sigma^2I)^{-1}y - \frac{1}{2}\log|K+\sigma^2I| - \frac{n}{2}\log 2\pi$$ 其中,$n$是数据点的数量,$K$是协方差矩阵,$K_{ij} = k(x_i,x_j)$。 在求解出模型的参数之后,我们就可以利用训练数据来预测新的未知数据点的输出值。具体而言,对于一个输入特征向量$x_*$,其对应的输出值$y_*$的预测值为: $$\hat{y_*} = f(x_*) = k(x_*,X)(K+\sigma^2I)^{-1}y$$ 其中,$k(x_*,X)$是$x_*$和训练数据$X$之间的协方差向量,$y$是训练数据的输出向量。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值