人工智能-作业5:卷积-池化-激活

本文介绍了人工智能作业中关于卷积、池化和激活的实践。通过For循环手工实现了这些操作,并使用Pytorch框架调用内置函数进行相同过程。同时,借助可视化工具帮助理解数字与图像的关系,展示运行结果。
摘要由CSDN通过智能技术生成

人工智能-作业5:卷积-池化-激活

For循环版本:手工实现 卷积-池化-激活

import numpy as np

x = np.array([[-1, -1, -1, -1, -1, -1, -1, -1, -1],
              [-1, 1, -1, -1, -1, -1, -1, 1, -1],
              [-1, -1, 1, -1, -1, -1, 1, -1, -1],
              [-1, -1, -1, 1, -1, 1, -1, -1, -1],
              [-1, -1, -1, -1, 1, -1, -1, -1, -1],
              [-1, -1, -1, 1, -1, 1, -1, -1, -1],
              [-1, -1, 1, -1, -1, -1, 1, -1, -1],
              [-1, 1, -1, -1, -1, -1, -1, 1, -1],
              [-1, -1, -1, -1, -1, -1, -1, -1, -1]])
print("x=\n", x)
# 初始化 三个 卷积核
Kernel = [[0 for i in range(0, 3)] for j in range(0, 3)]
Kernel[0] = np.array([[1, -1, -1],
                      [-1, 1, -1],
                      [-1, -1, 1]])
Kernel[1] = np.array([[1, -1, 1],
                      [-1, 1, -1],
                      [1, -1, 1]])
Kernel[2] = np.array([[-1, -1, 1],
                      [-1, 1, -1],
                      [1, -1, -1]])

# --------------- 卷积  ---------------
stride = 1  # 步长
feature_map_h = 7  # 特征图的高
feature_map_w = 7  # 特征图的宽
feature_map = [0 for i in range(0, 3)]  # 初始化3个特征图
for i in range(0, 3):
	feature_map[i] = np.zeros((feature_map_h, feature_map_w))  # 初始化特征图
for h in range(feature_map_h):  # 向下滑动,得到卷积后的固定行
	for w in range(feature_map_w):  # 向右滑动,得到卷积后的固定行的列
		v_start = h * stride  # 滑动窗口的起始行(高)
		v_end = v_start + 3  # 滑动窗口的结束行(高)
		h_start = w * stride  # 滑动窗口的起始列(宽)
		h_end = h_start + 3  # 滑动窗口的结束列(宽)
		window = x[v_start:v_end, h_start:h_end]  # 从图切出一个滑动窗口
		for i in range(0, 3):
			feature_map[i][h, w] = np.divide(np.sum(np.multiply(window, Kernel[i][:, :])), 9)
print("feature_map:\n", np.around(feature_map, decimals=2))

# --------------- 池化  ---------------
pooling_stride = 2  # 步长
pooling_h = 4  # 特征图的高
pooling_w = 4  # 特征图的宽
feature_map_pad_0 = [[0 for i in range(0, 8)] for j in range(0, 8)]
for i in range(0, 3):  # 特征图 补 0 ,行 列 都要加 1 (因为上一层是奇数,池化窗口用的偶数)
	feature_map_pad_0[i] = np.pad(feature_map[i], ((0, 1), (0, 1)), 'constant', constant_values=(0, 0))
# print("feature_map_pad_0 0:\n", np.around(feature_map_pad_0[0], decimals=2))

pooling = [0 for i in range(0, 3)]
for i in range(0, 3):
	pooling[i] = np.zeros((pooling_h, pooling_w))  # 初始化特征图
for h in range(pooling_h):  # 向下滑动,得到卷积后的固定行
	for w in range(pooling_w):  # 向右滑动,得到卷积后的固定行的列
		v_start = h * pooling_stride  # 滑动窗口的起始行(高)
		v_end = v_start + 2  # 滑动窗口的结束行(高)
		h_start = w * pooling_stride  # 滑动窗口的起始列(宽)
		h_end = h_start + 2  # 滑动窗口的结束列(宽)
		for i in range(0, 3):
			pooling[i][h, w] = np.max(feature_map_pad_0[i][v_start:v_end, h_start:h_end])
print("pooling:\n", np.around(pooling[0], decimals=2))
print("pooling:\n", np.around(pooling[1], decimals=2))
print("pooling:\n", np.around(pooling[2], decimals=2))


# --------------- 激活  ---------------
def relu(x):
	return (abs(x) + x) / 2


relu_map_h &
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值