PAT乙级真题 1079 延迟的回文数 C++实现(使用reverse()倒置字符串)

题目

给定一个 k+1 位的正整数 N,写成 a​k⋯a1a0的形式,其中对所有 i 有 0≤ai<10 且 a​k>0。N 被称为一个回文数,当且仅当对所有 i 有 ai=a​k−i。零也被定义为一个回文数。
非回文数也可以通过一系列操作变出回文数。首先将该数字逆转,再将逆转数与该数相加,如果和还不是一个回文数,就重复这个逆转再相加的操作,直到一个回文数出现。如果一个非回文数可以变出回文数,就称这个数为延迟的回文数。(定义翻译自 https://en.wikipedia.org/wiki/Palindromic_number )
给定任意一个正整数,本题要求你找到其变出的那个回文数。
输入格式:
输入在一行中给出一个不超过1000位的正整数。
输出格式:
对给定的整数,一行一行输出其变出回文数的过程。每行格式如下
A + B = C
其中 A 是原始的数字,B 是 A 的逆转数,C 是它们的和。A 从输入的整数开始。重复操作直到 C 在 10 步以内变成回文数,这时在一行中输出 C is a palindromic number.;或者如果 10 步都没能得到回文数,最后就在一行中输出 Not found in 10 iterations.。
输入样例 1:
97152
输出样例 1:
97152 + 25179 = 122331
122331 + 133221 = 255552
255552 is a palindromic number.
输入样例 2:
196
输出样例 2:
196 + 691 = 887
887 + 788 = 1675
1675 + 5761 = 7436
7436 + 6347 = 13783
13783 + 38731 = 52514
52514 + 41525 = 94039
94039 + 93049 = 187088
187088 + 880781 = 1067869
1067869 + 9687601 = 10755470
10755470 + 07455701 = 18211171
Not found in 10 iterations.

思路

题目中数字可能有1000位,所以需要用不能直接将字符串转数字相加,需要模拟字符串加法。

使用reverse()函数倒置字符串,其用法为:

#include <algorithm>
std::reverse(myvector.begin(),myvector.end());

判断倒置前后字符串是否相等,即可判断是否为回文数。

若不是回文数,则将倒置前后字符串模拟相加,得到新的字符串。

需要注意,如果一开始输入就是回文,则不用计算,直接输出即可,否则测试点2、3、4报错。

代码

#include <iostream>
#include <algorithm>
using namespace std;

string addString(string a, string b){
    string str = "";
    int carry = 0;
    for (int i=0; i<a.size(); i++){
        char ch = a[i] + b[i] + carry - '0';
        if (ch > '9'){
            carry = 1;
            ch -= 10;
        }
        else{
            carry = 0;
        }
        str = ch + str;
    }
    if (carry > 0){
        str = '1' + str;
    }
    return str;
}

int main()
{
    string a;    
    cin >> a;
    int n = 10;
    int i = 0;
    while (i<n){
        string b = a; 
        reverse(b.begin(), b.end());
        if (a==b){        
            cout << a << " is a palindromic number." << endl;
            break;
        }
        string c = addString(a, b);
        cout << a << " + " << b << " = " << c << endl;
        a = c;
        i++;
    }
    if (i==n){
        cout << "Not found in 10 iterations." << endl;
    }
    return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值