题目
给定一个 k+1 位的正整数 N,写成 ak⋯a1a0的形式,其中对所有 i 有 0≤ai<10 且 ak>0。N 被称为一个回文数,当且仅当对所有 i 有 ai=ak−i。零也被定义为一个回文数。
非回文数也可以通过一系列操作变出回文数。首先将该数字逆转,再将逆转数与该数相加,如果和还不是一个回文数,就重复这个逆转再相加的操作,直到一个回文数出现。如果一个非回文数可以变出回文数,就称这个数为延迟的回文数。(定义翻译自 https://en.wikipedia.org/wiki/Palindromic_number )
给定任意一个正整数,本题要求你找到其变出的那个回文数。
输入格式:
输入在一行中给出一个不超过1000位的正整数。
输出格式:
对给定的整数,一行一行输出其变出回文数的过程。每行格式如下
A + B = C
其中 A 是原始的数字,B 是 A 的逆转数,C 是它们的和。A 从输入的整数开始。重复操作直到 C 在 10 步以内变成回文数,这时在一行中输出 C is a palindromic number.;或者如果 10 步都没能得到回文数,最后就在一行中输出 Not found in 10 iterations.。
输入样例 1:
97152
输出样例 1:
97152 + 25179 = 122331
122331 + 133221 = 255552
255552 is a palindromic number.
输入样例 2:
196
输出样例 2:
196 + 691 = 887
887 + 788 = 1675
1675 + 5761 = 7436
7436 + 6347 = 13783
13783 + 38731 = 52514
52514 + 41525 = 94039
94039 + 93049 = 187088
187088 + 880781 = 1067869
1067869 + 9687601 = 10755470
10755470 + 07455701 = 18211171
Not found in 10 iterations.
思路
题目中数字可能有1000位,所以需要用不能直接将字符串转数字相加,需要模拟字符串加法。
使用reverse()
函数倒置字符串,其用法为:
#include <algorithm>
std::reverse(myvector.begin(),myvector.end());
判断倒置前后字符串是否相等,即可判断是否为回文数。
若不是回文数,则将倒置前后字符串模拟相加,得到新的字符串。
需要注意,如果一开始输入就是回文,则不用计算,直接输出即可,否则测试点2、3、4报错。
代码
#include <iostream>
#include <algorithm>
using namespace std;
string addString(string a, string b){
string str = "";
int carry = 0;
for (int i=0; i<a.size(); i++){
char ch = a[i] + b[i] + carry - '0';
if (ch > '9'){
carry = 1;
ch -= 10;
}
else{
carry = 0;
}
str = ch + str;
}
if (carry > 0){
str = '1' + str;
}
return str;
}
int main()
{
string a;
cin >> a;
int n = 10;
int i = 0;
while (i<n){
string b = a;
reverse(b.begin(), b.end());
if (a==b){
cout << a << " is a palindromic number." << endl;
break;
}
string c = addString(a, b);
cout << a << " + " << b << " = " << c << endl;
a = c;
i++;
}
if (i==n){
cout << "Not found in 10 iterations." << endl;
}
return 0;
}