人工智能
文章平均质量分 82
九张算数
数据治理,AI治理,熵增治理;数据集炼丹师;
展开
-
李飞飞的wordlabs一张图片可以生成3D视频的原理是什么?想入行AI的学生必学的技术!
想入行AI的同学们可以学习一下最新的AI技术李飞飞及其团队(斯坦福大学视觉实验室)的研究工作近年来在计算机视觉领域取得了许多突破,其中包括从单张图片生成3D视频的技术。这个领域的核心原理主要涉及技术的结合。原创 2024-12-03 18:22:58 · 814 阅读 · 0 评论 -
单纯的软件工程师不吃香了,软件和硬件结合的全能工程师会受市场青睐的时代到来了!
在科技飞速发展的当今时代,智能硬件的崛起正以前所未有的态势重塑着行业格局,一场深刻的变革悄然降临。这一变革不仅改变了产品的形态与功能,更对工程师的技能需求提出了全新的挑战,预示着单纯的软件工程师逐渐失去往昔优势,而软件和硬件结合的全能工程师受市场青睐的时代已然来临。原创 2024-12-02 11:26:06 · 452 阅读 · 0 评论 -
机器人最热门的研究开发领域视觉导航系统VPS:如果快速入门加入这个有前景的行业!目前是热门职业!想弯道超车的程序员可以走此赛道
自主导航SLAM使机器人能够在未知环境中自主导航,而无需预先构建地图。它结合传感器数据(如摄像头、激光雷达)来感知周围环境。实时环境建模通过SLAM,设备可以动态更新环境地图,适应变化。这在动态环境中尤其重要,例如在人群中移动的服务机器人。精准定位SLAM提供高精度的自我定位能力,比仅依赖GPS的定位更精确,尤其在室内环境。障碍物检测与规避实时构建的地图帮助机器人检测和规避障碍物,提高安全性。AR和VR应用在增强现实(AR)和虚拟现实(VR)中,SLAM用于跟踪设备的位置,增强用户体验。原创 2024-10-21 11:46:26 · 823 阅读 · 0 评论 -
多尺度卷积神经网络(MSCNN)的底层原理及使用环境是如何的?Ai人工智能目前已经发展到第二阶段
多尺度卷积神经网络(MSCNN)是一种用于处理不同尺度特征的深度学习模型。原创 2024-09-10 08:53:09 · 2664 阅读 · 0 评论 -
请问基于规则和强化学习的各自的优缺点有哪些?应用场景有哪些?今天的北京机器人展上的技术专家的技术
可以在稳定性和可解释性较高的领域中使用基于规则的系统,而在需要灵活应对动态环境的领域中使用强化学习。随着人工智能的发展,强化学习的算法和模型不断优化,特别是深度强化学习的引入,使得系统在处理高维环境时表现更佳。基于规则的系统和强化学习各自具有独特的优缺点和适用场景。技术的发展和新算法的出现,将进一步推动这两个领域的进步和创新。通过精心设计的评估方案,可以全面了解基于规则和强化学习系统的性能表现,从而进行优化和改进。评估基于规则和强化学习系统的性能需要不同的方法和指标。原创 2024-08-30 10:00:09 · 963 阅读 · 0 评论 -
AI操作系统势头正猛,以后LINUX,和window,Android,IOS等等的OS都将被AI OS所取代!
AI操作系统是一种旨在利用人工智能技术来优化和管理计算资源的操作系统。它不仅仅是一个传统意义上的操作系统,而是一个能够自主学习和适应用户需求的智能平台。原创 2024-07-14 10:27:25 · 765 阅读 · 0 评论 -
生成式人工智能(AIGC)永远不会取代开发者的业务,可能会取代一部分比较没有质量的代码?牵扯到算法构建及具体部署,AIGC就显得力不从心
生成式AI可以作为开发者的辅助工具,帮助他们完成繁琐的编码和测试任务,提高工作效率和质量。例如,AI工具的开发和优化需要大量高水平的专业人才,懂得如何训练和改进AI模型的开发者将变得炙手可热。此外,随着AI在各行各业的应用扩展,对AI产品的实施和维护、数据安全和隐私保护等方面的需求也将增加。传统的错误检测依赖于静态分析工具和单元测试,而AI工具可以通过分析大量的代码库,学习常见的错误模式,从而更快、更准确地发现问题。同时,要保持对AI生成代码的审慎态度,进行严格的代码审查和测试,确保软件的可靠性和安全性。原创 2024-07-07 15:49:00 · 991 阅读 · 1 评论 -
GPT5将引领第四次工业革命:人工智能、物联网、大数据、生物技术、量子计算等的综合体GPT大模型将改变很多现在的工作方式和生活方式,人人必读,人人必用
2024年6月22日,美国达特茅斯工程学院的一场采访引起了全球科技界的广泛关注。OpenAI首席技术官米拉·穆拉蒂在采访中确认,备受期待的GPT-5将在一年半后发布。这一消息不仅激起了科技界的热烈讨论,也让人们对人工智能(AI)的未来充满了期待和遐想。穆拉蒂将GPT-4到GPT-5的飞跃比作从高中生到博士生的成长,强调了新一代AI系统在特定任务上将达到博士级别的智能水平。然而,她也指出,这种智能提升并不意味着在所有任务上都能超越人类,而只是表现在某些特定领域。原创 2024-06-26 19:10:22 · 1014 阅读 · 0 评论 -
图像识别技术的来龙区别,图像识别的底层原理及应用场景大总结-人工智能基础知识必读
模式识别技术的优化和应用:传统的模式识别技术在医学图像处理和识别中存在不足,因此,研究者们对这些算法进行了改进和优化,使其更适合医学图像的处理。半监督学习的应用:在小样本数据集中,未标记的数据可以用来辅助训练。跨领域的融合:图像识别技术与其他领域的技术融合,如机器人技术、自动驾驶技术和无人机技术等,可以推动实时图像处理技术的应用和发展。多维性和复杂性的医学成像技术:考虑到医学影像数据的多维性和复杂性,研究者们正在探索基于密度分组、多特征连接和融合特征组合的医学成像技术和方法,以提高图像识别的准确性和效率。原创 2024-06-24 18:16:24 · 1161 阅读 · 0 评论 -
详细总结的决策树的来龙去脉,决策树的底层原理是什么?应用的场景如何快速高效应用决策树
决策树是一种常见的机器学习算法,用于分类和回归任务。它通过将数据递归地划分成更小的子集来构建一个树状模型,从而做出决策。本文将详细介绍决策树的历史背景、底层原理、构建过程、常见的算法、应用场景以及优缺点。原创 2024-06-24 18:02:39 · 1437 阅读 · 0 评论 -
音乐创作飞入寻常百姓家,旧时王谢将逐渐被AI淘汰-风云更替,历史必然
AI 音乐创作技术在过去几年中取得了显著进展。目前,AI 可以通过学习大量的音乐数据来生成新的音乐作品,包括旋律、和声、节奏等。一些 AI 音乐生成模型甚至可以模仿特定的音乐风格或艺术家的创作风格。应用领域:AI 音乐创作在多个领域得到了应用。例如,在音乐制作中,AI 可以帮助作曲家快速生成音乐创意,辅助音乐制作过程。AI 音乐也被应用于电影、游戏、广告等领域,为这些媒体提供背景音乐。原创 2024-06-19 23:27:32 · 975 阅读 · 0 评论 -
NLP主流大模型如GPT3/chatGPT/T5/PaLM/LLaMA/GLM的原理和差异有哪些-详细解读
GLM(General Language Model)原理基于统计语言学和机器学习技术,旨在生成或预测文本数据。其基本原理是通过训练一个大型的神经网络模型,使其学会理解语言的结构和上下文关系,从而能够根据给定的输入生成连贯、合理的文本输出。原创 2024-06-16 19:59:54 · 2127 阅读 · 0 评论 -
人人必看:人工智能成熟后,被社会广泛使用后,可能被取代的行业有哪些,以及AI后新兴的行业和职位有哪些?
人工智能软件开发:专注于开发和设计智能算法和软件,以实现机器学习和自动化决策。人工智能消费相关设备制造:涉及制造智能设备,如智能家居、可穿戴设备、智能机器人等。人工智能系统服务:提供包括云计算、大数据处理、智能系统解决方案等在内的服务。原创 2024-06-11 17:01:33 · 736 阅读 · 0 评论 -
【造化弄人:计算机系大学生真的象当年的高速公路收费员一样吗?】
程序员的人生跌宕起伏,从门庭若市,到门可罗雀,过山车的游戏真刺激,从天之骄子,到铁人三项,不知道这背后的逻辑是什么?原创 2024-06-07 10:08:58 · 745 阅读 · 0 评论 -
空间计算领域迎来大爆发!随着登月计划的实施,数字孪生技术更加成熟,单纯的软件工程将推出历史舞台,计算机科学与技术将被淘汰,这些应用层面的技术基本上被AI所取代
空间计算是一个涉及虚拟现实(VR)、增强现实(AR)和混合现实(MR)等技术的广泛领域,它允许用户在三维空间中与数字内容互动。这些技术目前已经在某些领域和行业中得到了应用,例如游戏、教育、医疗和制造业等。原创 2024-06-05 23:22:36 · 231 阅读 · 1 评论 -
大数据的并行推理技术很重要,尤其在私有化部署大模型中,AI人工智能用到的技术
并行推理技术的原理基于并行计算的概念,即利用多个计算资源同时处理推理任务,以提高推理速度和效率。在深度学习中,推理是指使用已经训练好的模型对输入数据进行预测或分类的过程。而并行推理技术则是在这个推理过程中,将计算任务分配给多个计算资源同时进行计算,从而加速整个推理过程。原创 2024-06-04 19:33:12 · 669 阅读 · 0 评论 -
【企业怎么最大化利用人工智能为企业带来效益最大化?】
人工智能对企业来说是不是收智商税?原创 2023-02-11 14:12:39 · 293 阅读 · 1 评论 -
ChatGPT只不过将人类知识圈的半径扩大了一个纳米的距离!
chatGPT历史的一粒尘埃,算力的一个里程碑,电力浪费的开山鼻祖!原创 2023-02-11 12:40:19 · 3681 阅读 · 0 评论