kettle案例14-过滤记录

参考《ETL数据整合与处理》--任务3.4

任务描述:在数据处理时,往往需要对数据所属类别、区域和时间等进行限制,将限制范围外的数据过滤掉。为了统计2班的考试人数和成绩,需要对“2019年10月年级月考数学成绩.xls”文件,使用【过滤记录】组件,过滤掉不是2班的数据。

 

 在【过滤记录】转换工程中,单击【过滤记录】组件,再单击工作区上方的

图标,预览过滤记录后的数据: 

 

 

 

### Kettle 使用案例与示例教程 Kettle 是一款功能强大的 ETL 工具,广泛应用于数据提取、转换和加载的任务中。以下是关于如何使用 Kettle 的一些具体案例和示例: #### 1. 数据迁移:从 CSV 文件迁移到 Excel 文件 此场景展示了如何将存储在 CSV 文件中的数据迁移到 Excel 文件中。操作步骤如下: - 新建一个 **Transformation** 脚本文件。 - 添加 **CSV 输入组件** 和 **Excel 输出组件** 并通过 Shift 键拖动鼠标连接这两个组件[^2]。 - 配置 **CSV 输入组件**,选择目标 CSV 文件路径并点击「获取字段」按钮以读取列名[^2]。 - 测试数据流是否正常工作,可以通过点击「预览」按钮查看数据内容。 - 接下来配置 **Excel 输出组件**,设置保存的目标 Excel 文件位置以及表格结构。 #### 2. 数据清洗:去除重复记录 假设有一个包含大量冗余信息的数据库表,需要删除其中所有的重复项,则可以按照以下方式构建 Transformation: - 创建一个新的 Transformation。 - 插入 **Table Input** 组件用于定义 SQL 查询语句来选取原始数据集合[^1]。 - 加入 **Unique Rows (HashSet)** 步骤用来过滤掉任何重复条目[^1]。 - 将清理后的结果写回到另一个新创建或者更新现有表当中去。 #### 3. 复杂业务逻辑处理:基于条件分支的数据分流 当面对复杂的商业需求时,比如根据不同客户群体发送个性化邮件列表,那么就可以利用 Job 来实现这样的流程控制: - 设计多个 Transformations 各自负责一部分特定类型的客户群组加工任务。 - 在主 Job 中串联这些子 Tasks ,并通过判断变量值决定执行哪一条路径上的 transformation[^1]。 ```python # 示例 Python 伪代码展示如何动态调整参数传递给不同的 transformations. for group in customer_groups: kettle_command = f"kitchen.sh /path/to/trans_{group}.ktr" os.system(kettle_command) ``` 以上仅列举了几种常见的应用场景,实际上随着实际项目复杂度增加还可以探索更多高级特性如性能优化技巧等等。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值