hadoop 实现数据排序

本文详细介绍了在Hadoop MapReduce中实现数据排序的各种方法,包括默认排序、部分排序、全排序、辅助排序和二次排序。通过自定义Bean对象、Mapper、Reducer以及分区器,实现了基于业务字段的排序需求,确保数据在输出时有序。
摘要由CSDN通过智能技术生成

前言

在很多业务场景下,需要对原始的数据读取分析后,将输出的结果按照指定的业务字段进行排序输出,方便上层应用对结果数据进行展示或使用,减少二次排序的成本

在hadoop的MapReduce中,提供了对于客户端的自定义排序的功能相关API

MapReduce排序

  • 默认情况下,MapTask 和ReduceTask均会对数据按照key进行排序
  • 默认的排序按照字典序,且实现排序的方法是快排

MapReduce排序分类

1、部分排序

MapReduce根据输入记录的键值对数据集总体排序,确保输出的文件内部数据有序

2、全排序

最终的输出结果只有一个文件,且内部有序,实现方式是只设置一个ReduceTask,但是这种做法在处理的某个文件特别大的时候,效率会非常低,这也就丧失了MapReduce提供的并行处理任务的能力

3、辅助排序

在Reduce端对key进行分组,比如说,在接收的key为bean对象的时候,想让一个或多个字段相同的key进入到同一个reduce方

评论 217
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

小码农叔叔

谢谢鼓励

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值