【大模型】Spring AI对接ChatGpt使用详解

目录

一、前言

二、spring ai介绍

2.1 什么是Spring AI

2.2 Spring AI 特点

2.3 Spring AI 为开发带来的便利

2.4 Spring AI应用领域

2.4.1 聊天模型

2.4.2 文本到图像模型

2.4.3 音频转文本

2.4.4 嵌入大模型使用

2.4.5 矢量数据库支持

2.4.6 用于数据工程ETL框架

三、Spring AI对接ChatGPT

3.1 前置准备

3.2 添加依赖

3.3 接入流程

3.3.1 配置文件

3.3.2 增加一个测试接口

3.3.3 接口测试

3.4 OpenAiChatClient 使用

3.4.1 call使用Prompt传递参数方式1

3.4.2 call使用Prompt传递参数2

3.5 OpenAiImageClient使用

3.5.1 其他参数传递使用情况

3.6 OpenAiAudioTranscriptionClient 使用

3.7 OpenAiAudioSpeechClient使用

四、Spring AI对接Ollama

4.1 Ollama介绍

4.2 Ollama本地部署

4.2.1 下载安装包

4.2.2 执行安装

4.2.3 Ollama部署千问大模型

4.2.4 补充说明

4.3 Spring Ai接入Ollama

4.3.1 引入Ollama依赖

4.3.2 添加配置文件

4.3.3 使用Ollama聊天api

五、写在文末


一、前言

ChatGPT从问世到现在,热度一直不减,GPT的广泛推广和使用,让AI领域变得越来越热闹,于是基于ChatGPT的核心,越来越多的公司和技术团队加入了大模型的领域。在这其中,作为技术框架语言,像主流的python,java等,为了方便开发者对ChatGPT的使用,以及后续生态的融合,也开始在框架层面引入对ChatGPT的支持,本文聊聊spring框架下对ChatGPT的支持的一个新组件spring ai的使用。

二、spring ai介绍

2.1 什么是Spring AI

spring ai官网文档地址:Prompts :: Sp

### 关于硅基流动对接 DeepSeek 的使用教程 #### 平台概述 硅基流动是一个提供多种人工智能模型和服务的平台,其中包括对 DeepSeek 大模型的支持。通过该平台,开发者可以轻松实现与 DeepSeek 模型的对接,并将其集成到自己的项目中[^1]。 #### 对接流程 以下是关于如何在硅基流动生成环境中完成与 DeepSeek 模型对接的具体方法: ##### 1. 创建 ASR 应用并获取 API 密钥 访问硅基流动控制台,创建一个专门用于自动语音识别 (ASR) 的应用实例。在此过程中,需确保已正确配置 Quota 策略,推荐将 QPS 设置为不超过 20 以优化性能表现[^2]。 ##### 2. Java SDK 集成 为了便于开发人员操作,硅基流动提供了官方维护的 Java SDK 工具包。可以通过 Maven 构建系统引入依赖项来简化项目的管理过程: ```xml <dependency> <groupId>cn.siliconflow</groupId> <artifactId>deepseek-sdk</artifactId> <version>2.3.1</version> </dependency> ``` 上述 XML 片段展示了如何定义 `pom.xml` 文件中的条目以便加载必要的库文件[^2]。 ##### 3. Spring Boot 整合示例 当采用 Spring Boot 开发框架构建应用程序时,请确认所使用的版本不低于 3.0 ,同时运行环境应满足 JDK 17 或更高标准的要求。下面给出了一段简单的代码片段用来展示初始化请求对象并向远程服务器发送数据的过程: ```java import cn.siliconflow.deepseek.client.DeepSeekClient; import cn.siliconflow.deepseek.model.RequestPayload; public class Main { public static void main(String[] args){ String apiKey = "your_api_key_here"; DeepSeekClient client = new DeepSeekClient(apiKey); RequestPayload payload = new RequestPayload(); // 填充实际参数... try{ var response = client.sendRequest(payload); System.out.println(response.toString()); }catch(Exception e){ e.printStackTrace(); } } } ``` ##### 4. Cherry Studio 客户端配置 对于希望通过图形界面快速验证功能效果的情况,可以选择安装 Cherry Studio 软件作为辅助手段之一。按照提示完成基础设置之后,在对应位置填入有效的 Api-Key 即可连接至目标服务提供商——此处即指代阿里云上托管着的 DeepSeek 实例[^3]。 --- #### 总结 综上所述,无论是借助编程接口还是利用可视化工具,都可以顺利达成基于硅基流动平台上部署和调用 DeepSeek 模型的目标。希望这些指导能够帮助您更高效地开展相关工作! 相关问题
评论 247
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

小码农叔叔

谢谢鼓励

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值