yolov5-6.0部署:基于旋转目标的yolov5部署---TensorRT部署

29 篇文章 39 订阅 ¥99.90 ¥299.90
本文介绍了如何使用TensorRT部署旋转目标检测算法YOLOv5-6.0,以提高检测速度。通过修改类别数、输入尺寸、YOLO层和解码部分,成功将模型转换并进行推理。实测显示,TensorRT部署后的推理时间显著优于OpenCV-CUDA和OpenCV-CPU。
摘要由CSDN通过智能技术生成

前面我们介绍了旋转目标检测以及如何使用opencv去部署,整体效果不错,但是发现一点就是速度太慢了,所以我们使用TensorRT来部署旋转目标检测算法。感兴趣的同学可以看我之前的关于opencv部署的博客。

https://blog.csdn.net/zhangdaoliang1/article/details/123028071https://blog.csdn.net/zhangdaoliang1/article/details/123028071

目录

1、项目介绍

2、环境配置

3、导出权重文件

4、生成engine

5、模型推理

6、时间对比

7、程序修改的地方

7.1 修改类别数和输入尺寸

 7.2 输出类别加1

7.3 yolo层修改

7.4 解码修改

8、代码下载


1、项目介绍

其中的具体效果如下:

评论 14
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Mrs.Gril

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值