之前负责flink平台的规划以及开发,这里记录flink如何写数据到hive。我们的场景都是些基于埋点数据的分析,用户活跃、用户新增之类的。用图表示大概如下:

原本是希望使用flink sql开发的,综合考虑后使用StreamingFileSink(点击连接查看官网),demo如下:
//前提是启用 Checkpoint,不然部分文件(part file)将永远处于 'in-progress' 或 'pending' 状态,下游系统无法安全地读取。
String outputBasePath = "hdfs://.../test/tablename/"
final StreamingFileSink<Row> sink = StreamingFileSink
.forRowFormat(new Path(outputPath), new SimpleStringEncoder<Row>("UTF-8"))
//.withRollingPolicy(OnCheckpointRollingPolicy.build())
.

本文介绍了如何使用Flink将数据实时写入Hive,重点讲解了采用StreamingFileSink的滚动策略、分桶策略和输出文件配置。通过自定义EventTimeBucketAssigner实现按事件时间分桶,设置滚动策略确保文件管理和Exactly-Once语义。数据按天写入HDFS后,通过定时任务添加Hive分区,解决小文件问题。
最低0.47元/天 解锁文章
2006

被折叠的 条评论
为什么被折叠?



