flink实战--读写Hive( hive on flink )

本文介绍了Apache Flink与Hive的集成,包括Flink 1.9.0及以后版本的Hive集成功能,如何使用HiveCatalog管理元数据,以及通过Flink读写Hive表和使用Hive UDF。内容涵盖HiveCatalog的配置、DML操作、自定义函数和执行模式选择,提供了详细的示例代码和配置说明。
摘要由CSDN通过智能技术生成

扫一扫加入大数据公众号和技术交流群,了解更多大数据技术,还有免费资料等你哦

Flink on Hive 介绍

                          Apache Flink 从 1.9.0 版本开始增加了与 Hive 集成的功能,1.10.0版本进行了功能的丰富,用户可以通过 Flink 来访问 Hive 的元数据,以及读写 Hive 中的表,Hive 是大数据领域最早出现的 SQL 引擎,发展至今有着丰富的功能和广泛的用户基础。之后出现的 SQL 引擎,如 Spark SQL、Impala 等,都在一定程度上提供了与 Hive 集成的功能,从而方便用户使用现有的数据仓库、进行作业迁移等。

设计架构

与 Hive 集成主要包含了元数据和实际表数据的访问,因此我们会从这两方面介绍一下该项目的架构。

1.元数据

                 

评论 6
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

阿华田512

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值