个性化推荐系统-实时召回模型

文章目录

背景

目前,已经验证了离线推荐模块,该模块基于历史数据提取特征并聚合相似度计算、基于用户的协同过滤、ALS等算法模型,为用户预先筛选并召回了大量可能感兴趣的items。
然而,随着用户行为的日益多样化和实时性的增强,仅仅依赖离线推荐已难以满足用户对即时性和个性化的更高需求。

因此,需要一个实时推荐模块,以实现对用户兴趣变化的即时捕捉和响应。这个模块将紧密集成到现有的推荐系统中,通过实时分析用户对items的评分、点击、浏览等互动行为,动态调整推荐策略。

需求

当用户对某个item进行评分后,系统会立即评估该评分对用户整体兴趣偏好的影响,并据此执行以下操作:

  • 精准删除:对于用户已明确表达不感兴趣(如低分评价)或已充分探索(如高分但多次查看)的items,系统将从召回数据仓中精准删除这些items的推荐数据,避免用户再次看到不感兴趣的内容,从而提升推荐列表的相关性和新鲜感。
  • 智能添加:基于用户的实时评分和互动行为,系统将预测用户可能感兴趣的新items,并将这些items的数据添加到推荐列表中。这。

实现

步骤 1: 设计实时推荐逻辑

  • 基于用户的最新评分,更新推荐模型。
  • 使用协同过滤、基于内容相似度的推荐等算法。
  • 定义评分阈值
    点赞、收藏和转发都是布尔值(即0或1),这些行为本身就具有很强的指示意义
    权重设置
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值