import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data
# 第一步、载入训练数据
mnist = input_data.read_data_sets(train_dir="../MNIST_data", one_hot=True)
# 设置批次大小
batch_size = 5 # 可以优化的地方,修改批次的数量
# 计算一共有多少个批次
n_batch = mnist.train.num_examples
# 第二步、定义神经网络模型
# 输入层
x = tf.placeholder(tf.float32, [None, 784])
y = tf.placeholder(tf.float32, [None, 10])
# 可以优化的地方,增加隐藏层
# 输出层
w = tf.Variable(tf.zeros([784, 10]))
b = tf.Variable(tf.zeros([10]))
prediction = tf.nn.softmax(tf.matmul(x, w)+b)
# 第三、定义代价函数
loss = tf.reduce_mean(tf.square(y-prediction)) # 可以优化的地方,修改代价函数
# 第四、定义优化函数
optimiter = tf.train.GradientDescentOptimizer(0.2) # 可以优化的地方,使用其他优化方法,可以修改步长
# 第五、最小化代价函数
train = optimiter.minimize(loss)
# 判断每一个预测是否准确:equal()是对比两个参数,arg_max是求出一维向量中最大的值所在的位置。返回布尔值
correct_prediction = tf.equal(tf.arg_max(y, 1), tf.arg_max(prediction, 1))
# 先把布尔值转为浮点型,统计准确率
accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
# 第六、初始化变量、开始训练
init = tf.initialize_all_variables()
with tf.Session() as sess:
sess.run(init)
# 迭代21个周期,其实就是全部数据训练21次
for epoch in range(1):
# 循环n_batch个批次,每次一百
for batch in range(n_batch):
batch_xz, batch_yz = mnist.train.next_batch(batch_size)
result = sess.run(train, feed_dict={x:batch_xz, y:batch_yz})
print("---batch--->"+str(batch)+"---loss--->"+str(sess.run(loss, feed_dict={x:batch_xz, y:batch_yz})))
acc = sess.run(accuracy, feed_dict={x:mnist.test.images, y:mnist.test.labels})
print("=======epoch=====>"+str(epoch)+"=====acc======>"+str(acc))
结束线/
欢迎大家加入Q群讨论:463255841
结束线/