2016年提高组模拟试题(20161109)禅与园林艺术
Description
上了大学之后,小W和小Z一起报了一门水课,在做作业时遇到了问题。
有一个长度为 n 的数列{ai},为一列树木的美观值。
现在有m 次询问,每次给出三个数l,r和P,
询问对于所有的l <= l’ <= r’ <= r
(a[l’] + a[l’ + 1] + … + a[r’]) mod P的最小值。
Input
第一行为两个正整数n和m,表示数列的长度和询问的个数。
第二行为n个整数,为a[1]~a[n]。
接下来m行,每行三个数l,r和P,代表一次询问。
Output
对于每次询问,输出一行一个整数表示要求的结果
Sample Input
4 2
8 15 9 9
1 3 10
1 4 17
Sample Output
2
1
Hint
对于20%的数据
1 <= n, m <= 1000,1 <= l <= r <= n, 1 <= P <= 100,0 <= a[i] <= 10^9
对于另外的30%的数据
1 <= n, m <= 50000,1 <= l <= r <= n, 1 <= P <= 10,0 <= a[i] <= 10^9
对于100%的数据
1 <= n, m <= 50000, 1 <= l <= r <= n, 1 <= P <= 100, 0 <= a[i] <= 10^9
分析:如果一个区间中的个数大于p,显然最小值为0,然后暴力就好了。
代码
#include <cstdio>
#define maxn 50005
#define ll long long
using namespace std;
ll sum[maxn],n,m;
ll min(ll x,ll y)
{
return x<y?x:y;
}
int main()
{
scanf("%d%d",&n,&m);
for (int i=1;i<=n;i++)
{
ll x;
scanf("%lld",&x);
sum[i]=sum[i-1]+x;
}
for (int ii=1;ii<=m;ii++)
{
int l,r,p;
scanf("%d%d%d",&l,&r,&p);
if (r-l+1>p) printf("0\n");
else
{
ll ans=p;
for (int i=l;i<=r;i++)
for (int j=i;j<=r;j++)
ans=min(ans,(sum[j]-sum[i-1])%p);
printf("%d\n",ans);
}
}
}